
Beyond Trend Following:
Deep Learning for Market Trend Prediction

Fernando Berzal, Ph.D.
Dept. Computer Science and Artificial Intelligence

University of Granada
Granada, Spain
berzal@acm.org

Alberto Garcı́a, CFA, CAIA, FRM, CMT
Head of Global Asset Allocation
ACCI Capital Investments SGIIC

Madrid, Spain
albertogarcia@accipartners.com

Abstract—Trend following and momentum investing are com-
mon strategies employed by asset managers. Even though they
can be helpful in the proper situations, they are limited in the
sense that they work just by looking at past, as if we were
driving with our focus on the rearview mirror. In this paper,
we advocate for the use of Artificial Intelligence and Machine
Learning techniques to predict future market trends. These
predictions, when done properly, can improve the performance of
asset managers by increasing returns and reducing drawdowns.

Index Terms—trend following, momentum investing, stock pre-
diction, market prediction, trend prediction, investment strategy,
machine learning, deep learning, hyperparameter tuning

I. INTRODUCTION

TREND following or trend trading is an investment strat-
egy based on the expectation of price movements to

continue in the same direction: buy an asset when its price
goes up, sell it when its price goes down. For its application,
obviously, you need a particular criterion to detect when prices
move in a particular direction over time. Since every investor
uses his own criterion, a market trend is often just a perceived
tendency within a financial market.

Traditional trend following is usually done on futures. Just
follow trends on a large, diversified set of futures markets,
covering major asset classes. Diversification is key: with
multiple assets with low or negative correlations, you can
achieve higher returns at a lower risk.

Trend following on stocks can easily yield negative returns
in the short side (when prices go down). When we trade
only on the long side, it does not always add any real value.
Compared with a passive index ETF, trend following requires
additional work and creates potential risks, yet it does not
always yield actual benefits.

Cole Wilcox and Eric Crittenden [1] proposed the use of
an all-time high as the entry criteria: buy on all time high and
sell at a trailing stop set at 10 times the 40-day ATR [average
true range], using a large stock universe. Trend following on
single stocks, or a few of them, however, is not attractive for
the risk you have to assume.

Standard trend following is not expected to work with
stocks, since their correlation is too high. But momentum
investing does. When a stock price goes up for a while, the
likelihood of rising higher is greater than the likelihood of
falling. Likewise, a stock going up faster than other stocks is

likely to keep going up faster than other stocks. This is the
momentum effect, known at least since the 1960’s [2].

Why does momentum investing work? According to aca-
demic studies [3], just because people overreact to information.
One explanation is that people who buy past winners and sell
past losers temporarily move prices. An alternative explanation
is that the market underreacts to information on short-term
prospects but overreacts to information on long-term prospects.
In any case, choosing the top past performers can yield positive
returns. Additional safeguards can also be employed, such as
not investing in stocks during bear markets.

For instance, Andreas Clenow [4] employs the following
trading rules on a weekly basis: rank stocks on volatility-
adjusted momentum (using an exponential 90-day regression,
multiplied by its coefficient of determination), calculate posi-
tion sizes (targeting a daily move of 10 basis points), check
the index filter (S&P 500 above its 200-day moving average),
and build your portfolio. Individual stocks are disqualified
when they are below their 100-day moving average or have
experienced a gap over 15%. When, in the weekly portfolio
rebalancing, a stock is no longer in the top 20% of the S&P
500 ranking or fails to meet the qualification criteria (moving
average and gap), it is sold. It is replaced by other stocks only
if the index is in a positive trend. Twice per month, position
sizes are also rebalanced to control risk.

What is the difference between trend following and mo-
mentum investing? Apart from the fact that both are valid
investment strategies for different situations and asset classes,
the key factor is that trend following just employs the asset’s
past returns, i.e., its time series momentum. In contrast,
momentum investing compares an asset’s momentum to the
momentum of other assets. Whereas trend following is es-
sentially autoregressive, momentum investing takes (a limited)
context into account.

A common drawback of both trend following and momen-
tum investing is that they reap benefits after the current trend
is already underway. Can we do better? Most investment
professionals might say that no, you cannot reliably predict
changes in market trends.

The ACCI·ON project started with the goal of using Artifi-
cial Intelligence techniques to predict trends in financial mar-
kets, including both equity markets and fixed-income markets.

As we will see, including context in our Machine Learning
models is essential to predict future market trends.

II. INVESTMENT PHILOSOPHY

Instead of trying to design a fully-automated algorithmic
trading decision, the goal of the ACCI·ON project was, from
its inception, the design of a tool to support the work of asset
managers, not to replace them. Human asset managers are
in charge of their assets under management [AuM] and they
should feel fully responsible for their management decisions.

A. Risk Indicators

Deciding when to change the composition of a portfolio is
one of the key decisions an asset manager has to make. Proper
timing is important, yet it is really hard for a human being to
determine when to buy/sell assets given the overabundance
of signals and the deluge of information available at his
fingertips. Hence, ACCI decided to base its investment strategy
on risk indicators that help asset managers time buying/selling
decisions.

The basic idea of a risk indicator in this context is that
a single number summarizes the current market situation,
indicating the probability of a severe drawdown in the market
of interest (e.g. S&P 500, NASDAQ 100, investment-grade
bonds, or high-yield bonds). When such an indicator surpasses
a predefined threshold, the asset manager can take a more
risk-seeking position in his portfolio. When the indicator
falls below a given value, the asset manager should cover
his positions and defensively switch to a more risk-averse
portfolio.

Given the prior experience of ACCI managers, the risk indi-
cators are real-valued numbers, between -1 and +1. When the
risk indicator is negative, asset managers should be defensive
with respect to risks in the market the indicator is designed for.
When an indicator approaches -1, the probability of a severe
drawdown in its market tends to one. When the risk indicator
is positive, asset managers could take a more positive attitude
towards the market trend. In the limit, when the risk indicator
approaches +1, the probability of a severe drawdown tends
to zero. Of course, risk indicator models are probabilistic and
some uncertainty is always present.

As we mentioned before, asset managers are always in
charge. They can modulate their risk exposure by establishing
different thresholds for changing their portfolio composition.
When their outlook is optimistic, they can set a lower threshold
for their positive portfolio. When their outlook is pessimistic,
they can set a higher threshold for abandoning their defensive
portfolio.

B. The Limits of Linear Models

Some financial institutions and asset managers resort to lin-
ear models when designing their own risk indicators. Billions
of dollars in assets under management are allocated using
strategies that rely on linear models.

A linear model is of the form ŷ =
∑

wixi, where ŷ is
the prediction (i.e. the risk indicator), the different xi are the

variables, features, or factors taken into account to make the
prediciton, and the weights wi model the importance of each
feature. Those weights can be learnt using a standard linear
regression model.

From a formal point of view, a linear model is only able
to separate between linearly-separable classes. In other words,
the decision frontier of such a model is a hyperplane (the
generalization of a three-dimensional plane and a straight
line in a two-dimensional space). A linear model cannot
differentiate between non-linearly-separable classes, no matter
how it is learnt.

Given that the World is highly nonlinear, linear approxi-
mations are not always suitable. They underfit data and this
underfitting causes an error that cannot be suppressed because
of the intrinsic limitations of linear models. In particular, given
a linear model:

• A change ∆xi in one of the model variables provokes a
change ∆ŷ = wi∆xi in the model prediction.

• That change, ∆ŷ is always the same, no matter what the
current context is. When xi has an associated positive
weight (wi > 0), the prediction always changes in the
same direction of the change observed in the input vari-
able xi. Likewise, a negative weight (wi < 0) makes input
variable and prediction change in opposite directions.

• As a consequence of model linearity, changes in the
model output are always proportional to changes in the
model inputs. In extreme situations, model predictions
are slow to change, given that input changes are often
gradual.

Figure 1 illustrates the behavior of a linear model, in blue,
when used to predict trends in the S&P 500 stock index. At the
end of February 2020, the effects of the COVID-19 pandemic
were already affecting worldwide markets, a few weeks before
WHO characterized the virus outbreak as a pandemic on
March 11th, 2020. The linear risk indicator, however, was slow
to react. In contrast, a nonlinear risk model, based on artificial
neural networks, was much more reactive (shown in red in
Figure 1).

Artificial neural networks, currently known as deep learning
models, are universal approximators from a mathematical
point of view [5] [6] [7] [8]. Essentially, they are combinations
of multiple simple mathematical functions that, when com-
bined, can implement more complicated functions. In short,
they are not subject to the stringent limitations of linear
models.

When used for designing risk models, deep learning tech-
niques are able to differentiate between non-linearly-separable
classes. Their decision frontiers are no longer hyperplanes,
they are virtually arbitrary.

Unlike the linear risk models used by many asset managers,
ACCI relies on nonlinear risk models. Their non-linearity
provides higher predictive capabilities for identifying market
trends and makes them much more reactive to sudden changes
in market conditions.

Figure 1. The limits of a linear indicator: The linear risk indicator (in blue) is unable to react quickly to a market shock, as happened at the start of the 2020
pandemic. In contrast, a non-linear risk indicator (in red) is much more reactive.

C. On the Use of Risk Indicators by Fund Managers

Given the complexity of financial markets, asset managers
face many challenges when deciding how to allocate assets and
when to change their portfolio composition. A risk indicator
can help alleviate some of their burden by providing a timely
signal they can use to change their risk exposure.

Figure 2 shows the ACCI risk indicator for the S&P 500
stock market index. It reacted quickly at the start of the 2020
pandemic and changed its course into positive territory just
a month later (the annual return of the S&P 500 index was
+16.26% in 2020). The risk indicator remained positive in
2021 (+26.89% S&P 500) and often turned to a negative value
in 2022 (-19.44% S&P 500). It remained conservative, with
shorter periods of negative values, in 2023 (+24.33% S&P
500). Finally, in 2024, it started with a positive outlook during
its first quarter (+10.79% S&P 500).

How can asset managers use the information provided by
a risk indicator? They can track its value to modulate their
risk exposure according to the current market situation. Let
us recall that a risk indicator for a given market predicts
the probability of a severe drawdown (e.g. > 5% in equity
markets, > 2% in bond markets).

ACCI provides risk indicators for different markets, includ-
ing the S&P 500 stock index. In the following paragraphs,
we illustrate the use of the ACCI S&P 500 risk indicator for
different scenarios that might be suitable investment strategies
for particular investors:

• Risk-on/risk-off strategy (e.g., XLK/XLP): The investor
switches between two assets depending on the value of
the risk indicator for the stock market. When the risk
indicator is high (i.e., low drawdown probability), you
invest into a procyclical sector, such as technology. In
this case, we use the XLK ETF (Technology Select
Sector SPDR Fund). When the risk indicator is low, i.e.,
below a predefined threshold (i.e., a higher drawdown
probability), you opt for investing in a countercyclical
sector, such as consumer staples (goods like foods and
beverages, household goods, and hygiene products, as
well as alcohol and tobacco, that people are unable -or
unwilling— to cut out of their budgets regardless of their
financial situation). In this case, we use the XLP ETF
(Consumer Staples Select Sector SPDR Fund).
Figure 3 shows the 5-year returns obtained by this
simple strategy, which just switches between technology
stocks and consumer staples. Table I summarizes its
performance metrics. The cumulative return of this risk-
on/risk-off strategy is 192.62%, much better than the
S&P 500 return (92.30%), albeit its maximum drawdown
(−36.73%) is also higher than the maximum drawdown
of its benchmark (−33.92%). The portfolio volatility is
similar to the overall S&P 500 index. Sharpe and Sortino
ratios are, therefore, higher due to higher returns.

• Cyclical strategy, with a more diversified portfolio:
Using the same decision criteria we used in the risk-

Figure 2. ACCI S&P 500 risk indicator. Source: ACCI Wealth Technologies, https://www.acciwealth.com/.

Figure 3. Risk-on / risk-off portfolio cumulative returns.

on/risk-off example, we switch between two predefined
portfolios depending on the value of the risk indicator
for the overall stock market. When the risk indicator is
high, we use a 100% equity portfolio with a selection of

procyclical sectors, which are expected to offer positive
returns when the outlook is positive. When the risk
indicator is low, we reduce our equity exposure to 30%,
with a combination of countercyclical assets, suitable for

Table I
RISK-ON / RISK-OFF PERFORMANCE METRICS.

Portfolio Benchmark
Cumulative return 192.62% 92.30%
Annualized return 23.96% 13.97%
Standard deviation 1.321% 1.338%
Annualized volatility 20.96% 21.24%
Maximum drawdown -36.73% -33.92%
Sharpe ratio 2.186 1.617
Sortino ratio 3.035 2.200

Table II
CYCLICAL/COUNTERCYCLICAL PERFORMANCE METRICS.

Portfolio Benchmark
Cumulative return 162.26% 92.30%
Annualized return 21.27% 13.97%
Standard deviation 1.019% 1.338%
Annualized volatility 16.17% 21.24%
Maximum drawdown -31.96% -33.92%
Sharpe ratio 2.433 1.617
Sortino ratio 3.369 2.200

more uncertain times. The composition of the procyclical
(positive) and countercyclical (defensive) portfolios are
are shown in Table III
Figure 4 displays the 5-year returns obtained by our
cyclical strategy, which just switches between two pre-
defined portfolios, from 30% to 100% equity. Table II
summarizes the performance metrics associated to our
cyclical/countercyclical strategy. Its cumulative return of
this risk-on/risk-off strategy is 162.26%, still much better
than the S&P 500 return (92.30%), albeit 30% lower than
the risk-on/risk-off example above. Its volatility, however,
is lower, given the base portfolio diversification. Sharpe
and Sortino ratios are now higher than before due to
higher returns and lower volatility.

• Systematic allocation strategy. As a third example,
we include a complete strategy with 3 different base
portfolios adjusted to different risk levels. These base

Table III
CYCLICAL/COUNTERCYCLICAL PORTFOLIOS.

Defensive portfolio (30% equity)
20% US Bond 0-1yr iShares ETF (Acc)
20% US Bond 1-3yr iShares ETF (Acc)
10% Gold Futures
10% Oil Futures (Brent)
10% S&P-GSCI Commodity Index Future
10% XLE Energy SPDR Select Sector ETF
10% XLU Utilities SPDR Select Sector ETF
10% XLP Consumer Staples SPDR Select Sector ETF

Positive portfolio (100% equity)
20% S&P 500 2x leveraged ETF
20% S&P 500 ETF
20% NASDAQ ETF
10% XLK Technology SPDR Select Sector ETF
10% XLY Consumer Discretionary SPDR Select Sector ETF
10% SOXX Semiconductor ETF
10% IBB Biotechnology ETF

Table IV
SYSTEMATIC ALLOCATION PERFORMANCE METRICS.

Portfolio Benchmark
Cumulative return 127.58% 22.24%
Annualized return 17.88% 4.10%
Standard deviation 0.659% 0.642%
Annualized volatility 10.47% 10.20%
Maximum drawdown -17.19% -24.70%
Sharpe ratio 3.059 0.982
Sortino ratio 4.381 1.332

portfolios cover a more diversified asset base and comply
with the requirements of the UCITS [Undertakings for
Collective Investment in Transferable Securities] regula-
tory framework in the European Union. The actual ACCI
SA fund now employs a similar asset allocation strategy.
For negative risk indicator values, we use a 30% equity
defensive portfolio, e.g. 30% in the S&P index and the
remaining 70% in (mostly short-term) US bonds. For
intermediate risk indicator values, we define a 70% equity
balanced portfolio, with the equity part mostly in the
S&P index and partially in emerging markets, whereas
we keep 20% in short-term US bonds and 10% in money
markets. Finally, for positive risk indicator values, we
have a 100% equity positive portfolio, now including
NASDAQ ETFs. The design of these base portfolios is
gradual, so that changing from one to the next does not
involve a 100% portfolio rotation. In our example, from
the defensive to the balanced portfolio, we would just
exchange 40% of our portfolio assets (keeping 30% in
fixed-income assets and 30% in equity markets), to meet
our 70% equity requirements. Likewise, the balanced and
positive portfolios can be designed to minimize portfolio
rotation when switching from the former to the latter or
vice versa.
Figure 5 displays the 5-year returns obtained by our sys-
tematic allocation strategy, which switches among three
predefined portfolios (30%/70%/100% equity). Table IV
summarizes the performance metrics associated to our
SA strategy. Its cumulative return of this risk-on/risk-off
strategy is still better than the S&P 500 return, 127.58%,
and much better than its associated benchmark (50%
MSCI World + 50% Global Aggregate). Its volatility is
kept under control and it exhibits a reduced maximum
drawdown. Sharpe and Sortino ratios are even higher than
in the previous examples.

As shown above, risk indicators can serve as a guideline
to configure different investment strategies. From switching
between assets, as in our risk-on/risk-of example, to full-
fledged portfolio allocation, as illustrated by our systematic
allocation case study.

The use of risk indicators can be tailored to the preferences
of a particular asset manager. He can just set a threshold to
decide when to switch from a defensive portfolio to a positive
one, or vice versa. Or he can adjust his risk exposure daily,
according to the risk indicator value at the close of the previous

Figure 4. Cyclical portfolio cumulative returns.

Figure 5. Complete systematic allocation portfolio returns, subject to UCITS constraints.

market session.
In the examples above, we assumed that the threshold was

a predefined value, the same for our 5-year simulations. How-
ever, thresholds can be adjusted dynamically, in accordance to
the manager outlook for a given time frame.

Hysteresis can also be used to minimize the number of
buy/sell operations. For instance, if we assume a 10% margin,
which corresponds to 0.2 points in the [−1,+1] interval of
the risk indicator, we can switch to our defensive portfolio
when the risk indicator falls below 0.0, yet do not return to
our positive portfolio until the risk indicator raises over 0.2.
In that case, minor fluctuations in the risk indicator are not
translated into potentially unnecessary flip-flop rotations in our
portfolio composition.

In summary, risk indicators can provide an important signal
for asset management, yet keeping the human asset manager
fully in charge of the situation. He can adopt their use in the
way that best serves his purposes. Given his particular goals,
he can customize his investment strategy by integrating the
use of risk indicators within his own comfort zone.

III. MODEL TRAINING FOR MARKET TREND PREDICTION

In the previous section, we introduced the use of risk
indicators in asset management. In this section, we delve into
the details of how they can be designed for particular markets.

As described above, risk indicators are predictive models
for drawdown periods. Drawdown, when talking about invest-
ments, is a measure of the decline from a previous historical
peak in the cumulative return or current value of an investment
strategy. In other words, we focus on the downside risk, the
probability that an asset portfolio will fall in price. Given
historical data, Machine Learning techniques can be used to
model that probability.

A. Machine Learning

Machine Learning [ML] is a field within Artificial In-
telligence [AI] that studies the design and development of
algorithms that can learn from data. Hopefully, the models
learnt using ML, apart from working properly with the data
they were trained on, should also generalize well to unseen
data. Figure 6 displays how ML works.

Given a data set, known as training set, and a ML algorithm,
the computer learns a model from the provided data. By
means of an inductive process, which depends on the particular
learning algorithm chosen, we build a model, whose properties
also depend on the specifics of the ML algorithm. Formally,
induction is making an inference based on an observation of a
sample (i.e., the training set). Abduction is making a probable
conclusion from what you know, so model building or training,
as it is often called, is an example of abductive reasoning
from a mathematical logic point of view. Model training,
as abductive reasoning, seeks the simplest and most likely
conclusion from a set of observations (those in the training
set).

Once the model is trained, it can be applied on new data to
make predictions. This application of the trained model to data

Figure 6. Machine Learning: Learning from data using Artificial Intelligence.

is an example of deductive reasoning. The model is used to
draw valid inferences that follow logically from their premises
(i.e., those represented by the trained model). Hence, the use
of ML models is often referred to as ‘inference.’

When evaluating ML models, a separate dataset is kept,
distinct from the training dataset. This dataset, often called test
set, is employed to evaluate the performance of ML models.
Why? Because the results on the training dataset would be
utterly optimistic and we need an unbiased estimation of the
true performance of ML models before they are deployed. This
is the role of the test set.

B. Machine Learning Techniques

We use Machine Learning techniques to design risk indica-
tors for financial markets, both fixed-income and equity mar-
kets. These risk indicators are predictive models for drawdown
periods. Since they use labelled historical data to be trained
on, they can be built using supervised ML techniques.

In supervised learning techniques, training data contains
both input variables (e.g., a vector of predictor variables) and
the desired model output. From input-output pairs, a model is
learnt from the training dataset. Where do the outputs come
from? Typically, an human expert has labelled each training
set example with the desired output. Once the training set is
prepared, it is the turn of the computer to learn from it and
train a suitable model using a particular learning algorithm.

A wide range of supervised learning algorithms are avail-
able, each one with its own strengths and weaknesses. In fact,
a well-known theoretical result, the “no free lunch theorem,”
asserts that there is no single learning algorithm that works
best on all supervised learning problems [9], a result that also
applies to optimization techniques [10].

Given that we cannot know beforehand which particular
ML technique will work best for a particular problem (we
might have some hints, yet they are never conclusive), we
have tested multiple ML techniques in the ACCI·ON project
to design ACCI risk indicators.

Testing multiple ML algorithms lets us compare the differ-
ences among the ML models they train. Our comparison takes
into account both quantitative and qualitative aspects. From a
quantitative point of view, we are interested in model accuracy,
precision, and recall, as well as in the episodic behavior of the
risk indicator when market trends change. For us, the dynamic
response of a risk indicator to a trend reversal is paramount, as

we discussed when describing the limitations of linear models.
From a qualitative point of view, model interpretability is
desirable, yet not essential, but model behavior is crucial. Even
when a binary output model might yield better quantitative
results, a zero-one response does not help asset managers
feel confident on the risk indicator value, as changes in the
indicator seem to be unpredictable. A gradual response is often
preferable, when daily changes in the risk indicator hint at
current potential trends in the underlying market.

In the ACCI·ON project, a wide range of supervised ML
techniques have been evaluated:

• Linear models, even when they exhibit some undesirable
properties, such as their lack of responsiveness when a
market trend is reversed, are still useful as a baseline.
They provide a foundation on which we can build on to
compare the effectiveness of more sophisticated learning
algorithms. In our experiments, we tested linear regres-
sion for regression problems as well as logistic regression
for classification problems.

• Support vector machines: A support vector machine, or
SVM, in addition to linear classification, can efficiently
perform a non-linear classification using what is called
the kernel trick. Since linear approximations are not
suitable for the non-linear world of financial markets,
SVMs provide an interesting alternative, even though
they are not truly scalable. SVMs represent data through
pairwise similarity comparisons between original data
observations. SVMs implicitly represent the original data
in transformed coordinates within a higher dimensional
space (actually, a potentially infinite-dimensional space)
and identify the maximum-margin hyperplace in that
space. Even though the decision frontier is still linear in
the transformed coordinate space, it corresponds to a non-
linear frontier in the original space. SVMs can be used
to solve both classification problems [11] and regression
problems [12].

• Ensembles are popular for winning data mining competi-
tions. In ML, ensemble methods combine multiple learn-
ing algorithms. As musical ensembles combine multiple
musical instruments to achieve a more harmonious result,
ML ensembles obtain better predictive performance than
any of the individual learning algorithms in the ensemble.
For that to occur, the ensemble must be designed so
that we can ensure that the individual algorithms within
the esemble do not always make the same mistakes.
From a quantitative point of view, they can achieve the
best numerical results, hence their popularity in Kaggle
competitions [13], even though they might be unsuitable
from a qualitative point of view. Two of the best-known
ensemble learning algorithms are random forests [14] and
gradient boosting [15].

– A random forest, proposed by Leo Breiman from the
University of California, Berkeley, is an ensemble of
decision trees. A decision tree is a symbolic model
most economists are already familiar with. Decision

trees were very popular in Machine Learning and
Data Mining at the turn of the century.

– Gradient boosting, proposed by Jerome Friedman
from Stanford University, is based on boosting. Most
boosting algorithms consist of iteratively learning
weak classifiers and adding them to a final strong
classifier. A weak classifier is only slightly correlated
with the true classification (it can label examples
better than random guessing). The resulting strong
learner is a classifier that is arbitrarily well-correlated
with the true classification. The predition model
obtained by gradient boosting is an ensemble of weak
prediction models. Gradient boosting algorithms are
iterative functional gradient descent algorithms; that
is, they optimize a cost function over function space
by iteratively choosing a function (weak hypothesis)
that points in the negative gradient direction.

• Deep learning models are based on artificial neural
networks [16] [17] [18]. Artificial neural networks are
connectionist models, formerly known as Parallel Dis-
tributed Processing (PDP) models.
Neural networks consist of individual neurons, which are
simple computational elements of the form

y = f
(∑

wixi

)
= f(w⃗ · x⃗)

The nonlinear function f is the neuron activation func-
tion, typically a sigmoidal function, such as the logistic
function and the hyperbolic tangent, or a rectified linear
function. In the former case, the neuron is said to be
sigmoidal; in the latter, it is a ReLU [Rectified Linear
Unit].
Multiple neurons can be put in parallel to create a network
layer with vector input x⃗, vector output y⃗, weight matrix
W , and activation function f , to be applied element-wise:

y⃗ = f (Wx⃗)

Multiple network layers can be stacked to create a feed-
forward neural network:

y⃗ = f (WLf (WL−1...f (W1x⃗)))

The last layer, characterized by the weight matrix WL, is
the network output layer. The input vector x⃗ is the input
layer, which performs no computation, just provides the
input to the network. Inner layers are called hidden layers.
When the network has more than one hidden layer, the
network is said to be a deep neural network, hence the
term ‘deep learning’ to refer to the learning techniques
that allow us to train deep neural networks.
The weights of an artificial neural network are typically
trained by stochastic gradient descent with the help of
a dynamic programming algorithm called backpropaga-
tion. Backpropagation is an efficient gradient estima-
tion method for neural network models, also known as
the reverse mode of automatic differentiation or reverse
accumulation. Backpropagation computes the gradient

of a loss function with respect to the weights of the
network for a single input–output example. It computes
the gradient one layer at a time and iterates backward
from the last layer to avoid redundant calculations of
intermediate terms in the Leibniz chain rule that is applied
to compute the gradient.
In contrast to symbolic models (e.g., decision trees) and
statistical techniques (e.g. SVMs), neural networks were
originally proposed as computational models to describe
aspects of human perception, cognition, and behaviour,
the learning processes underlying such behaviour, and the
storage and retrieval of information from memory [19].
From a computational perspective, feed-forward neural
networks can be interpreted as models that learn to extract
hierarchical features from data. The first layers of a feed-
forward network learn to extract relatively simple features
directly from the input data. As we advance through a
deep network, neurons learn to represent more complex
features from the features extracted by previous network
layers. Deep learning can, therefore, be viewed as hi-
erarchical feature representation [20], hence the name
of one of the major conferences in the area (ICLR, the
International Conference on Learning Representations).

Training ML models from real-world data poses significant
practical challenges. The design of the proper predictive model
for a given problem involves making decisions with respect
to multiple aspects of the ML model. We cover the different
degrees of freedom we have when building predictive models
for market trend prediction in the following subsections.

C. Model Output

The first decision we must make when building a predictive
model is the nature of our target variable, the value we are
trying to predict, typically denoted by ŷ. If we choose to
predict a categorical, discrete, or nominal variable, we build
a classification model. If we opt for predicting a continuous
real-valued variable, we are building a regression model.

Market trend prediction can be modeled either as a classi-
fication problem or as a regression problem:

• Trend prediction as a classification problem:
Our target variable will be a binary variable that indicates
whether or not our market of interest is immersed in
a drawdown period. The drawdown period covers from
peak to trough, from a local maximum to the following
local minimum.
How are local maxima and minima chosen? There are
several alternatives:

– We can choose the top-k drawdown periods accord-
ing to their magnitude. In the S&P 500 index, the
largest market crashes and bear markets include the
crash of 1929 (-86% from September 1929 to June
1932), the bear market of 1937 (-54% from March
1937 to March 1938), the 1973 oil shock (-48%
from January 1973 to October 1974), the 1987 bear
market (-34% from August 1987 to December 1987,

including the Black Monday of October 19, 1987),
the burst of the dot-com bubble (-49% from March
2000 to October 2002), the Global Financial Crisis
(-48% from August 2008 to March 2009), and the
start of the Covid pandemic (-33.92% from February
19th to March 23rd, 2020).

– Alternatively, we can choose every drawdown period
where our market of interest drops beyond a prede-
fined threshold (in percentage points). For instance,
a fund manager might be interested in predicting
equity drawdowns above 5%, deeming it unneces-
sary to act when downward trends are smaller in
magnitude, yet a different asset manager might be
interested in predicting 2% drops in bond markets.

In both cases, we might establish a time horizon, the
maximum period of time to be considered part of the
current trend. This time horizon, depending on the sit-
uation, might be measured in days, weeks, months, or
quarters, even years.
For classification problems, the cross-entropy, also known
as logarithmic loss or log loss, is a suitable loss function
for training a predictive model:

CE = −[y log ŷ + (1− y) log(1− ŷ)]

where y is the desired output and ŷ is our prediction.
• Trend prediction as a regression problem:

We can also interpret our trend prediction goal as a
regression problem. In this case, we can try to predict:

– The magnitude of the expected market drawdown at
each time period: 0 in bull markets, the maximum
drawdown at the start of a bear market, and 0 at the
end of the drawdown period corresponding to the
bear market.

– The expected market return until the next market
trend reversal: positive and decreasing in bull mar-
kets; negative and increasing in bear markets.

– The overall market return during the whole current
market trend: positive and constant in bull markets,
negative and constant in bear markets.

– The overall market drawdown during a bear market:
zero in bull markets, negative and constant in bear
markets.

As before, we might consider an unlimited time horizon
(for bear markets) or set a predefined time horizon in
accordance to the frequency of our particular trading
strategy.
For regression problems, the mean squared error is a
suitable loss function for training our predictive models:

MSE =
1

N

N∑
i=1

(y − ŷ)
2

where y is the desired output and ŷ is our prediction.
No matter if we model our prediction as a classification

or regression problem, we must also take into account that,
for our prediction to be actionable, it must be of the form

ŷ(t + 2) = f(x(t)). Our prediction at the close of a trading
session is a prediction valid not for the immediately-following
trading session, but for the session after that. In other words,
we must have the opportunity to trade today using yesterday’s
session data to prepare for tomorrow’s trend.

D. Input Variables

Simple forecasting models are autoregressive. In statistics,
econometrics, and signal processing, the output or target
variable of an autoregressive model depends only on its own
previous values. In time-series analysis, we predict the future
values of a time series based on its past values. Autoregressive
models are widely used in technical analysis to forecast future
security prices.

More advanced forecasting models take additional context
into account. That context can be provided by additional
variables or time series. For instance, instead of predicting
future S&P 500 values using only past S&P 500 values, we
might also incorporate bond market data as an additional input
to our predictive model.

With the initial support of Umberto Mármol and other
economists at ACCI Capital Partners, we analyzed a multitude
of economic variables that might serve as leading indicators
for predicting changes in market trends. It is essential that
they are leading indicators because we are especially interested
in detecting changing trends as soon as they happen. Many
economic variables are either lagging indicators (they hint at
trends after they have started) or are published with too much
delay to be useful when we expect a quick response from our
trend prediction model. These were finally discarded in our
risk indicator models.

Our final risk indicator models incorporate dozens of dif-
ferent variables, sometimes hundreds. In broad terms, the
variables we use as input can be grouped into the following
six categories:

• Stock market indexes for main global and regional equity
markets, including the S&P 500, the MSCI World, the
NASDAQ 100, or the Russell 2000, as well as the S&P
500 Equal Weight Index and many other regional stock
market indexes.

• Bond market data, including US Treasury bonds, their
yield curve, government bonds from the major economies
of the World, commercial paper interest rates, and cor-
porate bonds (both investment-grade and high-yield).

• Currency exchange rates for the World major currencies
and currency baskets such as the U.S. Dollar Index
(DXY).

• Futures market data, including commodity indexes (GSCI
and DJCI), commodity futures, energy (oil and natural
gas), and precious metals (e.g., gold).

• Volatility indexes associated to different markets, includ-
ing the well-known VIX and MOVE volatility indexes,
as well as volatility measures for commodities, gold,
currencies, stocks, and bonds.

• Macroeconomic variables including leading indexes
(OECD and BBK), ISM data, freight indexes, advance

retail sales, consumer sentiment data, monetary data, or
weekly initial unemployment claims, among many others.

A wide range of input variables were chosen for their
ability to move the particular markets we were designing risk
indicators for or just for their usefulness as leading indicators.
Using scores, even hundreds, of input variables in a predictive
model causes technical problems that are not always solvable
using traditional techniques. Fortunately, deep learning models
were up to the task and helped us improve the predictive power
of our risk indicators.

E. Feature Engineering

Once input variables have been selected, they must be
prepared to be used as the input to Machine Learning models.
First of all, a proper encoding must be selected, often depend-
ing on the particular ML technique to be used for training a
predictive model.

Even when no additional variables are included, apart from
those of the time series we wish to model, we must decide
whether we provide the time series values as they are acquired
or we preprocess them to make it easier for the ML algorithm
to learn a good model. For instance, when we are predicting
the evolution of the S&P 500 stock index, using index values
would hamper most ML algorithms, since the index is near
its all-time high and current index values have never been
observed in the past. It is much more reasonable to use
percentage changes, always as model input and as model
output in the case of regression models.

Before using some ML techniques, the scale of the input
data must also be adjusted. Even when ML techniques are
able to cope with different scales for different inputs, learning
is easier if we do some preprocessing. It is usually a good
idea to normalize or standardize all the model inputs before
proceeding further. Scale changing transformations include the
following:

• Feature scaling, unity-based normalization, or [0,1] nor-
malization brings all values into the [0,1] unit interval:

x[0,1] =
x− xmin

xmax − xmin

• Min-max feature scaling or min-max normalization
brings values into the [a,b] interval:

x[a,b] = a+
x− xmin

xmax − xmin
(b− a)

For instance, some deep learning models benefit from a
bipolar encoding, using the [-1,1] interval.

• Robust normalization or robust standardization employs
the median and interquartile range (IQR) to be more
robust against outliers in data:

xrobust =
x− xmedian

xIQR

• Standardization or z-score normalization is a more com-
mon approach, using the mean µ and the standard devi-
ation σ:

z =
x− µ

σ

The z-score, or standard score, measures the number of
deviations by which the value of the raw score is above
or below the mean value. It works well for data that
is normally distributed, when large deviations from the
mean are not frequent. In a normal distribution, 68.3%
of the data lie in the [µ − σ, µ + σ] interval, 95.4%
of the data lie in within two standard deviations (the
[µ − 2σ, µ + 2σ] interval), and 99.7% of the data lie in
within three standard deviations (the [µ − 3σ, µ + 3σ]
interval). The six-sigma interval covers 99.9999998% of
data (less than one value in 500 million falls outside this
range).
When you have a sample of data, the z-score computation
of that sample yields the well-known t-statistic, used by
Student’s t-test for statistical hypothesis testing.

When working with time series, not all ML techniques are
able to use them directly as model inputs. Therefore, scalar
features are often extracted from them. Autoregressive models
are often limited to a small window in the time series past;
i.e., they use just the previous time series values as input.
Some deep learning models, fortunately, are able to process
sequences in general and time series in particular.

The efficient market hypothesis [EMH] states that prices
reflect all available information and consistent alpha genera-
tion is impossible. If it were true, beating the market would
not be feasible. However, even simple autoregressive models
can benefit from the design of input variables derived from
the original time series we are modeling. For instance, Zura
Kakushadze, from Quantigic Solutions LLC, Stamford, CT
[21], enumerates 101 ‘alphas’ that have proven to be useful
in algorithmic trading. An ‘alpha’ is an indicator that, when
used in combination with historical data, can be useful for
making predictions on the future price movements of financial
instruments. In other words, ‘alphas’ provide some capability
to beat the market. When used for predicting the S&P 500
stock index, for instance, they achieve a 54% accuracy rate
[22], somewhat above the 50% accuracy expected by the EMH,
an edge that is enough to obtain benefits if we used high
frequency trading [HFT] strategies.

High frequency trading, however, is not a suitable invest-
ment strategy for many investment funds. More traditional
asset managers do not want to trade too often, so the quan-
titative models used in HFT do not match their expectations.
They often want to minimize the number of trades in their
portfolios (in order to reduce operational risks) and prefer a
low portfolio rotation. Risk indicators, as described in this
paper, are designed for them.

There is still a problem that must be solved. Daily market
data is noisy. That noise might cause sudden temporary fluc-
tuations in risk indicators, leading to unnecessary trades and
flip-flop rotations. Depending on the particular ML technique
employed to build the risk indicator, different noise reduction
strategies might be used:

• Some ML algorithms, such as linear models, are not
particularly robust to the presence of noise in data, so
that noise must be filtered before it reaches the model

Figure 7. Correlation matrix for 101 alphas, from [22]: Indicators employed
by algorithmic trading strategies often exhibit some correlation between them.

input. Input noise filtering, however, delays the input
to the model when trend changes suddenly appear. This
delay is added to the limited reactivity of linear models,
hence compounding the problem and limiting the ability
of linear risk indicators to react to trend reversals.

• Other ML algorithms, such as deep learning models,
can be made robust against input noise without having
to filter that noise beforehand. In fact, noise can act
as as regularizer and help improve the performance of
such models on unseen data. If brief fluctuations are
observed in their output, that output can be filtered to
reduce wiggling and provide more aesthetically pleasing
risk indicators, with a more continuous appearance and
without the loss of model responsiveness associated to
input noise filtering.

Apart from data normalization/standardization, custom fea-
ture engineering, and noise reduction filters, automated feature
extraction and dimensionality reduction techniques can also
help improve the performance of trend prediction models.
Some of alternatives available for mining complex data include
the following:

• Principal component analysis [PCA] is the best-known
feature extraction and dimensionality reduction tech-
nique, developed by Pearson in 1901 [23] and Hotelling
in 1933 [24]. Data is linearly transformed onto a new
coordinate system so that that the new axes (i.e. the
principal components) capture the largest variation in
the data can be easily identified. In other words, the
coordinate system is rotated to match the distribution of
the input data and most of the variance in data is captured
by the first few dimensions.

• CUR decomposition [25] [26] [27] approximately ex-

presses the original data in terms of a basis consisting of
actual data elements and thus have a natural interpretation
in terms of the processes generating the data. CUR
decomposition is a scalable alternative to PCA, when
data can be stored but is too large to practically perform
superlinear polynomial time computations on it.

• Dynamic Mode Decomposition [DMD] [28] [29], given
time series data, computes a set of modes each of
which is associated with a fixed oscillation frequency
and decay/growth rate. Each mode can be physically
meaningful because it is associated with a damped (or
driven) sinusoidal behavior in time.

• Wavelets, sometimes called brief oscillations, are wave-
like oscillations with an amplitude that begins at zero,
increases or decreases, and then returns to zero one or
more times. Used for decades in digital signal processing,
the first-known wavelet was the Haar wavelet (1909).
Wavelet analysis is similar to Fourier analysis in that it
allows a target function over an interval to be represented
in terms of an orthonormal basis. A key difference is that
wavelets capture both frequency and location information
(i.e., location in time).

• Kernel PCA [30] is is a nonlinear extension of principal
component analysis (PCA) using kernel methods. The
kernel trick is used to factor away much of the com-
putation: a non-trivial, arbitrary function is ’chosen’ that
is never calculated explicitly, allowing the possibility to
use very-high-dimensional functions, since we never have
to actually evaluate the data in that space.

• Stochastic Neighbor Embedding [SNE] [31] places
objects, described by high-dimensional vectors or by
pairwise dissimilarities, in a low-dimensional space in a
way that preserves neighbor identities. Its more efficient
t-distributed variant, t-SNE [32], runs in O(n2) time and
requires O(n2) space.

• Uniform manifold approximation and projection
[UMAP] [33] is another nonlinear dimensionality reduc-
tion technique. Visually, it is similar to t-SNE, but it
assumes that the data is uniformly distributed on a locally
connected Riemannian manifold.

• Autoencoders are deep learning models used to learn
efficient codings of unlabeled data (i.e., for unsuper-
vised learning). In fact, they were originally proposed
as a nonlinear variant of PCA based on artificial neural
networks [34]. An autoencoder learns two functions: an
encoding function that transforms the input data, and a
decoding function that recreates the input data from the
encoded representation. Regularized autoencoders (sparse
[35], denoising [36], and contractive [37]) are effective in
learning representations for subsequent predictive tasks.

Even though you might think that given the desired model
output and the designed model inputs is enough to let the
computer do its job and learn the best possible model from
the available data, there are still other degrees of freedom in
the design of predictive models.

F. Model Hyperparameters
Each Machine Learning technique is designed for building

a particular kind of model (e.g., a symbolic decision tree, a
support vector machine, a neural network, or a full ensemble
of models). Machine learning train those models by learning
from the training data. However, there are many other model
parameters, commonly known as hyperparameters, that are not
learnt from data. They are adjusted by data scientists who build
models for solving a particular problem.

In the case of deep learning models, the problem is daunting.
You can choose different neural network topologies, i.e., dif-
ferent ways to connect neurons within a neural network. You
can also play with the number of layers in the network or the
number of neurons at each network layer. You can even change
the kind of neurons that constitute the network, e.g., changing
their internal structure or their nonlinear activation functions.
But, beyond the neural network architecture itself, you have
multiple degrees of freedom for training neural networks.
There are multiple optimization algorithms and training strate-
gies, from stochastic gradient descent (as in online or mini-
batch learning) to Hessian-free optimization, using conjugate
gradients or L-BFGS. There are also a wide range of heuristic
techniques, known as regularization methods, that help prevent
overfitting.

Let us start by analyzing the different neural network archi-
tectures that can be used for working with time series. Time
series are challenging for many ML algorithms, a problem that
is exacerbated when we have to deal with hundreds of them.
Fortunately, different neural networks architectures have been
proposed to deal with sequential data, which includes time
series as a particular case:

• Recurrent neural networks [RNNs]: In feed-forward
neural networks, the outputs of each layer serve as inputs
to the following layer, but there are no feedback loops. In
recurrent neural networks, there are recurrent connections
between hidden units. These recurrent connections pro-
vide feedback loops and, in some sense, provide memory
to neural networks. RNNs can then operate on sequences
of inputs xt, with the time step t representing the position
of a particular within the sequence or time series.
Simple recurrent networks [SRNs] are fully-recurrent
neural networks that connect the output of all hidden units
to their input for each hidden layer in the network [38]:

ht = f(Wxt + Uht−1)

The output of hidden layers now depends on both their
current input xt, through their weight matrix W , and their
previous output ht−1, through a second weight matrix U .
Training RNNs is performed by backpropagation through
time, ot BPTT [39], which consists of unrolling or un-
folding the recurrent network and performing backpropa-
gation on the unrolled computational graph associated to
the network.
Gated RNNs create paths through time whose derivatives
do not vanish nor explode, a common problem with deep
neural networks and Elman’s RNNs.

The long short-term memory [LSTM] model introduced
self-loops to enable paths where the gradient can flow
for long [40]. The behavior of a LSTM cell with a forget
gate is defined by the following equations:

ft = σg(Wfxt + Ufht−1 + bf)

it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)

c̃t = σc(Wcxt + Ucht−1 + bc)

ct = ft ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ σh(ct)

where, as in simple RNNs, the matrices W and U
contain the weights for inputs and recurrent connections.
A LSTM cell contains an input gate i that decides which
pieces of new information to store in the current state, an
output gate o that controls which pieces of information
in the current state to output, a forget gate f that decides
what information to discard from a previous state b, a
hidden state vector h (i.e., the output of the LSTM cell),
and a cell state vector c.
Gated recurrent units [GRUs] [41] are like LSTMs, with
a gating mechanism to input or forget certain features,
but without a context vector or output gate, resulting in
fewer parameters than LSTMs:

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

ĥt = ϕ(Whxt + Uh(rt ⊙ ht−1) + bh)

ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt

where ⊙ represents the Hadamard product (i.e., element-
wise multiplication), z is the update gate, r is the reset
gate, and h is the output vector.
The recurrent networks we have discussed have a causal
structure, their state at time t only depends on data from
the past, which is suitable for time series prediction. Other
applications, however, employ bidirectional RNNs and
their prediction depends on whole input sequences. Such
architecture is suitable for dealing with coarticulation
in speech recognition, optical character recognition for
hand-written manuscripts, or word disambiguation in
natural language processing.
RNNs have been the most common architecture for
dealing with sequential data, at least until the appearance
of transformers. In their gated version, i.e. LSTMs and
GRUs, they have been used with some success in the
implementation of trading systems [42] [43]. However,
RNN training is problematic and limited when they have
to deal with long-term dependencies.

• Convolutional neural networks [CNNs] are widely-
used in signal processing applications, including speech
recognition and computer vision (e.g., image classifica-

tion, object detection and tracking...). They are based on
the discrete convolution operation:

y(t) = (x ⋆ w)(t) =
∑
i

x(i)w(t− i)

whose first operator x is the input and whose second
operator w is often referred to as the kernel or convolution
mask. In neural networks, the kernel or mask w can be
learnt using backpropagation.
In CNNs, there are no recurrent connections. A network
topology with weight sharing substitutes for the recurrent
connections of RNNs. Whereas RNNs receive their input
sequentially (one value at a time), CNNs receive their
input in parallel (the whole sequence at once).
Time delay neural networks [TDNNs] [44] were proposed
to classify patterns with shift-invariance (i.e. they do not
require explicit segmentation prior to classification) and
model context at each layer of the network. They perform
a 1D convolution across time and they were originally
proposed for speech recognition [45] [46], where the
automatic determination of precise segments or feature
boundaries was difficult or impossible.
In computer vision applications, 2D convolutions are
used. Their historical antecedent is Fukushima’s Neocog-
nitron [47] [48], inspired, at least partially, by the archi-
tecture of the first layers of our visual cortex.
CNNs have been successfully applied to solve all kind
of problems involving signals, no matter whether they
are one-dimensional (sounds, time series, sequences...)
or multidimensional (images and video). They have also
been used for stock market prediction, as in CNNpred
[49].
Multi-scale CNNs [50] are an interesting CNN variation
and were originally proposed for traffic sign recogni-
tion (i.e. image classification). Conventional CNNs are
organized in strict feed-forward layered architectures,
in which the output of one layer is fed only to the
following layer. Multi-scale CNNs add skip connections,
connecting the output of each convolutional layer to the
input of the final fully-connected network layers, which
are responsible for the final prediction. The motivation
for combining representation from multiple stages in
the classifier is to provide different scales of the CNN
receptive fields to the final classifier.

• Attention mechanisms and transformers [51] also
eliminate the recurrent connections in RNNs, without
arbitrarily restricting connections between neurons in the
nework as CNNs do.
Transformers convert their sequential input into a nu-
merical representation, a sequence of token vectors. An
embedding layer converts tokens and positions of the
tokens into vector representations. At each transformer
layer, tokens are contextualized within the scope of the
context window with other tokens via a parallel multi-
head attention mechanism that allows the signal for key
tokens to be amplified and the signal for less important

tokens to be attenuated. Transformer layers carry out
repeated transformations on the vector representations,
extracting more and more information by alternating
attention and feed-forward layers.
The components of the Transformer attention mechanism
are two vectors of dimension dk, the query q and the
key k, and a third vector of dimension dv , the values
v. The matrices Q, K, and V pack sets of queries,
keys, and values. Three projection matrices WQ, WK ,
and WV generate different subspace representations of
the query, key, and value matrices. Finally, the projection
matrix WO is used for the multi-head attention output.
The output of the attention mechanism is computed as a
weighted sum of the values, where the weight assigned to
each value is computed by a compatibility function of the
query with the corresponding key. The scaled dot-product
attention computes

attention(Q,K, V) = softmax

(
QKT

√
dk

)
V

where each output of the softmax(x) function is ob-
tained from

yj =
exj∑
i e

xi

In essence, the attention function is a mapping between
a query and a set of key-value pairs to an output.
Transformers led to the development of large lan-
guage models [LLMs], such as OpenAI’s generative
pretrained transformers [GPTs], Google’s BERT [Bidi-
rectional Encoder Representations from Transformers],
and many other alternative models, both open-source
and proprietary (see https://huggingface.co/spaces/lmsys/
chatbot-arena-leaderboard). LLMs support popular appli-
cations such as ChatGPT or DALL·E. These LLMs are
the largest artificial neural networks ever trained, with
hundreds of billions of parameters, and they require huge
datasets and huge computational resources for training
them.

Let us know turn our attention to regularization. The goal
of regularization methods is improving the performance of
deep learning models on unseen data, i.e., data different from
those available in the training set. Since neural networks are
universal approximators [5] [6] [7] [8], they can easily overfit
training data and their performance may suffer when deployed
and used on novel data.

Training data, apart from the relevant patterns we are
interested in, also contains noise. Accidental regularities due
to the particular dataset used for training and sampling errors
might leak into the models we train. When we are training
a model parameters, however, we cannot separate relevant
from accidental regularities, so we always incur the risk of
overfitting. As John von Neumann said, with four parameters
you can fit an elephant, with five you can make him wiggle
his trunk. In deep learning models, you can have thousands,
millions, and even billions of parameters.

The combined use of multiple regularization methods is
more than advisable to to prevent overfitting when training
deep learning models. Many techniques can help us achieve
this goal. For instance, we can obtain more training data. This
is often the best option if we have the capability to train a
neural network using more data and the ability of obtaining
those extra data, which is not always the case. We can also try
to adjust the network parameters so that the neural network
has the right capacity for our particular problem, enough for
identifying the regularities in our data that are truly relevant,
but not too much, so that it cannot learn spurious patterns
(assuming, obviously, that the spurious ones are somehow
weaker than the relevant ones). A third viable strategy is
creating an ensemble using multiple individual models. An
ensemble can be built using “model averaging” by mixing
many different models with different hyperparameters or even
the same kind of model trained on different subsets of training
data, a technique known as bagging. An ensemble can also be
built using Bayesian fitting, a probabilistic approach based on
combining the predictions of multiple neural networks with
the same architecture but different weight matrices.

A wide variety of heuristic regularization techniques can be
applied during the training process of a neural network. In their
essence, they all try to limit the capacity of the neural network,
so that it fits the complexity of the problem the network is
trying to model. In particular, the following regularization
methods can be used and combined when training a deep
learning model:

• Early stopping consists of stopping the training process
before the neural network overfits data. Stochastic gradi-
ent descent is an iterative optimization algorithm used
to train neural networks. We start training a network
whose parameters are initialized with small weights. As
the network is trained, the optimization algorithm makes
the model fit the training data better with each iteration.
If we keep a separate validation set, we can periodically
check the error of the model on that validation set and
stop training as soon as overfitting makes its appearance
(i.e., when the error on the training data keeps reducing
but the error on the validation set starts to increase).

• Loss function regularization adds additional terms to
the loss function we optimize when training a neural
network, so that error minimization is not the only
criterion used to adjust the network parameters. There
are different forms of this kind of regularization:

– L2 regularization [52], also known as weight decay
[53], Tikhonov regularization [54], or ridge regres-
sion [55], adds a quadratic penalty term to the loss
function, the Euclidean or L2 norm:

L = Lerror + λ
1

2

∑
k

w2
k

where Lerror is the loss function corresponding to
the model error (e.g., MSE for regression, cross-
entropy for classification), and λ is a regularization
factor (another hyperparameter to be adjusted).

Weight decay prevents overfitting and leads to softer
models, whose outputs change more slowly when
their inputs change. When a network has two similar
inputs, e.g. two heavily-correlated signals, L2 regu-
larization will prefer to share weight between them,
instead of assigning all the weight to a single input.

– L1 regularization [56] [57], also known as Lasso
regression [58], resorts to the L1 norm, the norm
used for the Manhattan distance:

L = Lerror + λ
∑
k

|wk|

Lasso is actually an acronym for ‘Least Absolute
Shrinkage and Selection Operator.’ L1 regulariza-
tion leads to sparser models, so that many network
weights are zeroed. In fact, it was originally proposed
as a technique for enabling neural networks to forget.

– Elastic nets [59] combine both L1 and L2 regular-
ization. L1+L2 regularization leads to the following
loss function in elastic nets:

L = Lerror + rλ
∑
k

|wk|+ (1− r)λ
1

2

∑
k

w2
k

where another hyperparameter r splits the regular-
ization factor between L1 and L2 regularization.

• Noise can also have a regularizing effect. Even when
the presence of noise in the training data might lead to
overfitting, explicitly adding noise to the training process
can also lead to more robust models. Noise can be
introduced at different points during training:

– We can add noise to the input data [60], a technique
also employed by denoising autoencoders [36]. In
some cases, training with noise is equivalent to L2
regularization [61].

– We can add noise to the network parameters, i.e., its
weights. Weight noise, also known as synaptic noise,
has been used to train recurrent neural networks [62].
Under some circumstances, when using zero-mean
Gaussian noise, it can also be interpreted as adding
a regularization term proportional to ||∇wy||2 so that
small perturbations in the network weights cause a
limited effect in the network output y [63].

– Noise can also be added to the activation levels of
hidden units [64]. This strategy is similar to the
introduction of noise in the input, yet now we ensure
that the noise reaches all hidden layers in a deep
neural networks.

– Finally, we could even add noise to the gradient
itself, i.e., the signal used to train the network [65].

Regardless of the particular strategy used, noise leads to
smoother models, whose outputs do not change too much
when slight perturbations are present in their input or,
maybe, their parameters. It is no surprise that some con-
nections can be established between noise regularization
and function loss regularization [66].

• Dropout [67] is a particularly effective regularization
technique. For each training example, each hidden neuron
is randomly ignored (or dropped out) with some probabil-
ity. For instance, if p = 0.5, half of the units in the hidden
layers are not employed for each particular example (a
different randomly-chosen half for each different exam-
ple). The idea behind dropout is that hidden units stop
depending or trusting too much on the work performed
by other hidden units in the same layer [68]. When a
hidden unit knows that other units might do its job, it
might become a free rider. In Geoffrey Hinton’s words,
complex conspiracies are not robust! When a hidden unit
has to work properly with many different sets of units in
the same network layer, it is much more probable that
the unit learns something useful.
Dropout regularization is interesting because, in some
sense, provides a way to combine multiple models. In
fact, it is like building a whole ensemble at the cost of
training a single network [69]. For each training exam-
ple, we sample from a family of 2H different network
architectures, a family composed of members who share
their weights. Given a particular training dataset, you
actually only train some of the models in that exponential
size family and each trained model receives just a single
training example, an extreme form of bagging. By sharing
weights, all models are regularized, even better than with
L2 or L1 regularization. In fact, weight sharing is another
regularization technique that partially explains the success
of convolutional neural networks [CNNs].
It should be noted that Monte Carlo dropout [70], used to
perform multiple predictions from a single trained model,
can help us obtain a more reliable prediction and even an
estimate of the uncertainty in our prediction.

• Batch normalization [71] normalizes the layers’ in-
puts by re-centering and re-scaling. Initially proposed to
mitigate the problem of internal covariate shift, when
parameter initialization and changes in the distribution
of the inputs of each layer affect the learning rate of the
network, it has been observed to smooth the optimization
landscape, allowing for faster training and providing an
additional regularizing effect [72].
Batch normalization standardizes not only the network
inputs, but the inputs for every network layer. Therefore,
it can be interpreted as as preprocessing mechanism for
the inputs of each network layer. For each mini-batch, we
estimate its mean µ and variance σ2. Next, we standardize
using z-scores. Given the activation levels h of a hidden
unit for a mini-batch of m examples, its batch-normalized
version, hbn, is computed as

µ =
1

m

m∑
i=1

hi

σ2 =
1

m

m∑
i=1

(hi − µ)2

hbn =
h− µ√
σ2 + ϵ

where ϵ is a very small value (e.g., ϵ = 10−8) just em-
ployed for avoiding divisions by zero. Once the network
is trained, the values of µ and σ2 can be replaced by
measurements obtained during the training process (e.g.
the means and deviations observed for the whole training
set).
As described above, batch normalization could affect
the network behavior. For instance, if we normalize all
the inputs of a sigmoidal unit, we might be forcing it
to operate on its linear regime. So an additional linear
transformation is appended to the normalization above:
γhbn + β. This transformation, if we used γ = σ and
β = µ, would result in the original activation levels. The
final result is, therefore, BNγ,β(h) = γhbn+β, where γ
and β can be learnt as any other network parameters just
by using the proper error gradients. In other words, batch
normalization preprocesses input data for every network
layer and that preprocessing is elegantly integrated into
the network training algorithm.

G. A Configuration Nightmare: AutoML to the Rescue

The ACCI database contains thousands of time series. Even
after discarding individual stocks and ETFs, we still have
hundreds of time series that can be relevant for predicting
trends in financial markets.

Feature or variable selection, time series selection in our
case, is a key issue when building ML models. When we have
v variables, there are 2v subsets of them we use as input to
a predictive model. With hundreds of variables, we can easily
reach the Eddington number, the estimated number of protons
in the observable universe, which is similar to the estimated
number of atoms, around 1080. We can even surpass a googol,
10100. The difference factor, 1020, might not seem too large,
but it is one million times the World GDP in US dollars (above
$100 trillion dollars, i.e. 1014 dollars). World population is
below 1010 people, which is still four times larger than the
average number of seconds in a lifetime.

Some traditional ML techniques require feature or variable
selection in order to be effective. More advanced learning
algorithms, such as deep learning models, are able to do
feature selection automatically (though better results can often
be achieved with the proper data preprocessing work). Some
regularization methods help us obtain sparser models, hence
effectively discarding the less relevant inputs. Even then, there
are still multiple degrees of freedom in the design of a ML
model.

Apart from variable or feature selection (i.e., choosing
individual model inputs), we have a wide range of techniques
at our disposal for preprocessing them. From selecting the
right normalization or standardization strategy to choosing
their proper representation, including a multitude of automated
feature extraction and dimensionality reduction techniques.

Model outputs can often be modeled in different ways,
without a clear indication of which of them might behave
better for our particular prediction problem.

As we discussed previously, ML models also have their own
hyperparameters, whose interaction cannot often be predicted.
In the case of deep learning models, this problem is exacer-
bated. We have a wide range of neural network architectures.
Layers within the network can be connected in multiple ways.
The size of each layer and the particular details of each unit
within each layer can also be varied.

Apart from the final model hyperparameters themselves,
additional degrees of freedom are available for the model
training process. The optimization algorithms behind learning
techniques have their own parameters, from learning rates and
momentum to weight initialization strategies. And, of course,
multiple regularization methods can be mixed and matched at
will, each one with its own hyperparameters.

The resulting number of model training configurations,
which grows exponentially with the number of hyperparame-
ters, is mind-boggling. How can be choose the most suitable
hyperparameters for a particular predictive model?

• Grid search performs an exhaustive search by testing
every possible combination of values for the different
hyperparameters. Given d hyperparameters, if the i-th
hyperparameter can take vi different values, grid search
performs

∏d
i=1 vi experiments. In the simplest case, for

binary hyperparameters, grid search leads to 2d tests,
which grows exponentially with the number of dimen-
sions of the search space (i.e., the number of hyperparam-
eters). Given its prohibitive cost, grid search can only be
performed for a very limited number of hyperparameter
values, typically as a final fine-tuning strategy.

• Greedy strategies are much more efficient. For instance,
we can test for different values of a particular hyper-
parameter to check which value leads to better results.
Using this specific values, we then test different values
for the following hyperparameter, and so on. That strategy
requires

∑d
i=1 vi experiments for each cycle through the

different algorithm hyperparameters. For binary hyper-
parameters, it requires 2d tests, and effort that is linear
with the number of dimensions in the search space. It
is basically a hill-climbing strategy and, as such, can be
stuck at a local optimum. It is like coordinate descent,
but without any kind of optimality guarantee.

• Random search [73] can avoid local optima and is often
a more effective strategy. Given a fixed budget, we just
perform a set of experiments for random hyperparameter
configurations. This strategy is very easy to implement
and often leads to better results. It is more effective
in practice than the aforementioned systematic search

alternatives. Why? Because, for the same number of
experiments, it explores a wider zone of the search space.

Whereas greedy strategies exploit the best known result
around a specific search area, random search explores different
areas within the search space. Intelligent search strategies can
also be used to achieve a reasonable trade-off between ex-
ploration and exploitation. Instead of systematically exploring
a particular set of hyperparameter values or sampling those
values at random, we can guide the search process. Machine
learning techniques can be used for that and they have led to
the development of the AutoML field, the automation of ML:

• Bayesian optimization [74] methods maintain a proba-
bilistic belief about the performance of the model in terms
of its hyperparameters. They use a so-called acquisition
function to determine which experiment to perform next.
Bayesian optimization is particularly well-suited to hyper-
parameter optimization problems, since the function we
are trying to optimize is an expensive black-box function.
Evaluating a particular combination of hyperparameter
values requires running an expensive training process, yet
the evaluation of the acquisition function is much cheaper.
Bayesian optimization employs an underlying Gaussian
process model. A Gaussian process models a distribution
over functions. When you sample a Gaussian process,
you obtain a particular function. That function can be
used to estimate the expected improvement for different
combination of hyperparameter values, and then guide
the search process. For instance, we might start by
randomly sampling the search space, with a few samples
per dimension (e.g., 3d). Those samples are used to train
a Gaussian process model, which is repeatedly sampled
to propose the next hyperparameter configuration to test.
The process is repeated iteratively, updating the Gaussian
process model each time we get new results on actual
models.
Since the Gaussian process, used as acquisition function,
is inexpensive with respect to training a whole deep
learning model and is commensurate with how desirable
a model might be, we optimize the acquisition function
to select the configuration for the next experiment. We
have just replaced our original optimization problem with
another optimization problem, but on a much-cheaper
function.
A common alternative, GP-UCB [75] [76], where UCB
stands for upper confidence bound, is used by pop-
ular hyperparameter optimizers such as Keras Tuner,
Spearmint [77], or auto-sklearn [78] [79] [80]. The GP-
UCB acquisition function contains explicit exploitation
and exploration terms. Under certain conditions, the iter-
ative application of this acquisition function will converge
to the true global optimum of the actual function we are
trying to optimize.

• Machine learning techniques can be used for hyperpa-
rameter optimization, in what might be called a second-
order ML problem. In other words, we use ML algo-

rithms to learn how to set the parameters of another
ML algorithm. Many different techniques have been tried
in practice, from random forests in SMAC [Sequential
Model-based Algorithm Configuration] [81] and tree-
structured Parzen estimators [TPE] in Hyperopt [82] [83]
to neural networks in DNGO [Deep Networks for Global
Optimization] [84]. Of course, those ML algorithms also
have their own hyperparameters, which should be set
properly to obtain good results.

• Gradients can be computed, or merely estimated, to
perform hyperparameter optimization. Hypergrad [85]
extracts gradients for the whole training process. The
computation of hypergradients, i.e., the hyperparameter
gradients, is conceptually appealing but not too practical.
Derivative-free optimization [86], used in tools such as
the RBFOpt optimizer [87], choose random points and
approximate the true gradients. Even a crude estimate
can help us choose in which direction to move within the
extremely large space of hyperparameter configurations.

• Freezing heuristics can help us reduce the use of
computational resources in hyperparameter optimization.
Freeze-thaw Bayesian optimization [88] monitors current
experiments so that it is able to decide when to launch
a new experiment, when to freeze an experiment that no
longer seems promising, and when to thaw a previously-
frozen experiment when the discovery of additional in-
formation makes it promising again. Lazy hyperparameter
tuning [89] aims to determine when a particular hyperpa-
rameter configuration will not lead to promising results.
In that case, we can avoid its costly evaluation. In some
sense, it freezes a particular configuration before it even
exists. In principle, we could use any suitable heuristic for
that purpose, even use some kind of statistical criterion,
such as an hypothesis test, as the following family of
hyperparameter optimization techniques.

• Racing algorithms [90] are based on statistical testing
and lead to early stopping-based hyperparameter opti-
mization methods. Alternative configurations are repeat-
edly evaluated throughout the race. Whenever statistical
significant evidence about the inferiority of an alternative
is found, that alternative will be dropped out of the race.
That is, racing algorithms focus the search on the most
promising configurations using statistical tests to discard
the ones that perform poorly. It can be guaranteed that the
eventual survivors will be statistically significantly better
than the discarded ones. The irace package [91] imple-
ments the iterated racing algorithm. Successive halving
[SHA] [92] begins as a random search and periodically
prunes low-performing models. Asynchronous successive
halving [ASHA] [93] improves SHA by removing the
need to synchronously evaluate and prune low-performing
models. The Hyperband optimizer [94] is a higher level
early stopping-based algorithm that invokes SHA or
ASHA multiple times with varying levels of pruning
aggressiveness.

• Neuroevolution hybridizes artificial neural networks with

evolutionary computation, leading to EANNs [Evolving
Artificial Neural Networks] [95]. This field provides an
endless source of neat acronyms. Neuroevolution tech-
niques employ evolutionary algorithms to create artificial
neural networks. Some of them use direct encodings for
the parameters in a neural network (e.g. their topology),
such as SANE [Symbiotic Adaptive Neuroevolution],
ESP [Enforced Sup-Populations], NEAT [NeuroEvolu-
tion of Augmenting Topologies], or CGP [Cartesian Ge-
netic Programming]. Other neuroevolution algorithms are
based on indirect encodings, when the genes used to
represent neural networks in the evolutionary algorithms
encode rules that can later be used to build t henetworks,
such as CE [Cellular Encoding], G2L [Graph Grammar
L-Systems], HyperNEAT [Hypercube-based NEAT] and
ES-HyperNEAT [Evolvable- Substrate HyperNEAT], or
MENA [Model of Evolving Neural Aggregates].
Evolutionary optimizers [96] [97] and population-based
training [PBT] [98] [99] can be used to learn both
hyperparameter values and network weights. For instance,
in a genetic algorithm such as NSGA-II [100], multiple
learning processes operate independently, using differ-
ent hyperparameters. With evolutionary methods, poorly
performing models are iteratively replaced with models
that adopt modified hyperparameter values and weights
based on the better performers. Current neuroevolutionary
techniques can be viewed as the descendants of the neural
network pruning and growing algorithms that proliferated
in the 1990’s but were gradually displaced by the adop-
tion of multiple regularization techniques, which were
much more efficient from a computational point of view.

Hyperparameter tuning and optimization is an active area
of research. Apart from the popular approaches based on
Bayesian optimization using Gaussian processes or those de-
rived from evolutionary computation (e.g., the genetic algo-
rithms used by EANNs), many other strategies are currently
under investigation, from spectral techniques [101] and Lips-
chitz functions [102] to a myriad of metaheuristics, of which
genetic algorithms are just an instance.

Even though many of the proposed approaches start with
lofty goals, they frequently settle on relatively humble results.
And they often do so at a huge computational cost, since many
strategies are not truly scalable. Sometimes, however, you get
interesting results. Some AutoML systems have been able
to propose neural network architectures for solving specific
problems that human experts deemed not to be suitable for
that kind of problems. In some sense, AutoML systems are
able to discover things we do not know, with surprising results
now and then.

Even when taking into account its limitations, AutoML is
still much better that performing tests by hand. That is not the
kind of tasks we, humans, do well. AutoML techniques avoid
undesirable psychological biases, something we cannot do, no
matter how hard we try. AutoML is less prone to work well
with the methods we like and worse with the ones we dislike.
Its unrelenting determination and more objective approach is

invaluable for solving complex ML problems.

H. Model Evaluation

There is still a question we have not answered for the
problem we are trying to solve, that of predicting trends
in financial markets. From the countably infinite number of
potential models and hyperparameter configurations, how do
we choose the right one?

The incorrect method would be testing as many alternative
as possible to check which one performs better on the test
set. That would be easy to do but would led to a misleading
estimation of how well our model will perform in practice.
The particular model that works better on our particular test
set might not be the one what would perform better on other
test sets (or the future data we will apply our model to).

A better approach involves the use of a validation set. We
then have to split the available data into three different parts: a
training set (to learn the model parameters, e.g. neural network
weights), a validation set (not used during training, to be
used to decide which hyperparameter configuration is the most
suitable), and a test set (to obtain an unbiased estimate of how
well our model will work in the real world).

Cross-validation [CV], sometimes called rotation estimation
or out-of-sample testing, provides an even better model valida-
tion technique for assessing how a particular hyperparameter
configuration will generalize to an independent data set. Cross-
validation provides an estimate of the quality of a predictive
model and also of the stability of its parameters.

Cross-validation includes resampling and sample splitting
methods that use different portions of the data to test and
train a model on different iterations. In k-fold cross-validation
[k-CV], the original data set is randomly partitioned into k
equal-sized subsets, often referred to as folds. 10-fold cross-
validation [10-CV] is commonly used. Of the k folds, one is
retained as the validation data for testing the model, and the
remaining k − 1 folds are used as training data. The process
is repeated k times, with each of the k folds used exactly
once as the validation data, to obtain k estimates of the model
performance. The k results can then be averaged to produce a
single estimation.

In time series data, the independence assumption of the
random partition performed by the standard cross-validation
procedure is violated. Current time series values are supposed
to depend on their past values, i.e., xt+1 depends on xt, and
so on. Therefore, we should never use values in the training
set that are posterior in time to the values on the test set we
use to evaluate model performance. That would lead to biased
overly-optimistic estimates for our true model performance.

Walk-forward Validation [WFV] is a time-series cross-
validation technique used to assess the performance of pre-
dictive models for time-ordered data. This includes trend
prediction and time series forecasting for stock prices, weather
data, sales figures, and financial markets. When the temporal
sequence matters in our prediction, test sets must always be
posterior than training sets.

Figure 8. Walk-forward cross validation, from [22]: Models are trained on
historical data (in blue) and tested using test sets (in red) that always posterior
to the data used to train them.

Walk-forward cross-validation proceeds as follows. Let us
assume that we are using natural years to split our time series.
You start by training a model on historical data up to the year
y and testing it on the year y + 1. Then, you train another
model on data up to the year y+1 to test it on the year y+2.
And so on. At the end, you will have k unbiased estimates
of the true performance on your model, which you can use to
decide which hyperparameter setting will likely perform better
in practice.

Walk-forward cross-validation respects the temporal order
of observations, making it suitable for time-series data (tem-
poral consistency). Since the model is never trained on future
data, the risk of data leakage is minimized. Obviously, it
requires enough data to train models on historical data for
different training windows. Its unbiased estimates can then
provide a realistic assessment of how models will perform on
future, unseen data.

I. Inside the Black Box: The Limits of XAI Techniques

Even though they are powerful, deep learning models are
often criticised for being black boxes. Their full behavior
cannot be understood in the same sense that we can easily
grasp the behavior of a linear models or decision trees. Linear
models have a limited number of parameters, just one for each
input, and their output is derived directly from changes in their
inputs (in fact, the output change is proportional to the input
change and that proportion is given by the corresponding input
weight in the model). Decision trees are symbolic models and
their decisions can be easily followed, from the root of the tree
to a leaf, just by looking at the criteria used to split the tree.
However, deep learning models comprise thousands, millions,
or even billions of parameters we cannot really know how
they interact. This has led to the recent surge of eXplainable
AI [XAI] techniques.

XAI focuses on reasoning behind the decisions or pre-
dictions made by ML models so that they can be made
more understandable and transparent. Interpretability is an-
other common term used to refer to this goal. In black box
ML models, nobody can explain why the model arrived at a
particular conclusion. So XAI can be crucial for practical and
even regulatory reasons.

Tim Miller [103] has explored some key issues in XAI.
First, explanations are contrastive. They are sought in response
to particular counterfactual cases, a.k.a., foils. People do not
ask why P happened, but rather why P happened instead of Q.
Second, explanations are selected in a biased manner. People
rarely, if ever, expect an explanation that consists of an actual
and complete cause of an event. Humans are adept at selecting
one or two causes and this selection is influenced by cognitive
biases. Third, probabilities probably do not matter. Referring to
probabilities or statistical relationships in explanation is not as
effective as referring to causes. The most likely explanation is
not always the best explanation for a person. Using statistical
generalizations to explain why events occur is unsatisfying,
unless accompanied by an underlying causal explanation for
the generalisation itself. Last but not least, explanations are
social. They are presented relative to the explainer’s beliefs
about the explainee’s beliefs. Explanations are not just the
presentation of associations and causes (causal attribution),
they are contextual. While an event may have many causes,
often the explainee cares only about a small subset (relevant to
the context), the explainer selects a subset of this subset (based
on several different criteria), and explainer and explainee may
interact and argue about this explanation.

When working with ML models, model interpretability can
refer to the degree to which an observer can understand the
cause of a decision [104] or he degree to which a human
observer can consistently predict the model output. [105].

Whereas some XAI techniques have been proposed for
particular kinds of ML models (e.g., saliency maps highlight
which regions of an image lead to its final classification),
the most interesting ones are model-agnostic. Model-agnostic
methods can be used with any ML technique, so they are
general-purpose XAI tools:

• A partial dependence plot [PDP], or PD plot, shows
the marginal effect one or two features have on the
predicted outcome of a machine learning model. The
partial dependence function computes averages in the
training data to provide, for each value of the chosen
feature, what the average marginal effect on the prediction
is. It has a causal interpretation: by changing a feature and
measuring the changes in the predictions, we analyze the
apparent causal relationship between the feature and the
prediction [106].

• The individual conditional expectation [ICE] is the
local method equivalent to the global PDP. Global XAI
methods describe the average behavior of a ML models,
while local XAI methods explain individual predictions.
ICE plots display how each particular prediction changes
when a feature changes [107]. Variants of this method

include centered ICE [c-ICE] plots and derivative ICE
[d-ICE] plots.

• Accumulated local effects [ALE] plots show how fea-
tures influence the prediction of a ML model on average
[108]. While M plots average the predictions over the
conditional distribution, ALE plots average the changes
in the predictions and accumulate them.

• Permutation feature importance measures the impor-
tance of a feature by calculating the increase in the
model’s prediction error after shuffling its values in the
training set. A feature is deemed to be important if shuf-
fling its values increases the model error; i.e., the model
relied on the feature for performing the right predictions.
A model-agnostic version of feature importance is called
model class reliance [109].

• Feature interaction techniques describe how different
features interact with each other in situations when
predictions cannot be expressed as the combination of
individual feature effects and reductionism can no longer
work. Feature interaction can be measured using Fried-
man’s H-statistic [110], variable interaction networks
[VIN] [111], or partial dependence-based feature inter-
action [112].

• Anchors [113], a.k.a., scoped rules, explain the individual
predictions of black box models by finding decision rules
that anchor the model prediction. A rule anchors a local
prediction when changes in features not considered by
the rule do not affect the final prediction.

• LIME stands for Local Interpretable Model-agnostic
Explanations [114]. Local surrogate models are trained
to approximate the predictions of the underlying black
box model. For instance, we can train a linear model in
the neighborhood of a particular example so that linear
model can be used as an local approximation to the
behavior of the more complex, nonlinear model. The
surrogate model should provide a good local approxima-
tion to the the black box model, but it does not have to
be a good global approximation. This property is called
local fidelity. LIME just trains local surrogate models to
explain individual predictions.

• SHAP stands for Shapley Additive exPlanations [115].
Yet another XAI method to explain individual predictions,
SHAP is based on Shapley values [116], proposed by the
Nobel Prize winner Lloyd S. Shapley in his studies of
coallitional game theory. Shapley values assign unique
payouts to players depending on their contribution to
the total payout generated by the collaboration of all
players. Shapley values result in a linear model where
the contribution of the j-th feature to the prediction
is computed as the average marginal contribution of
a feature value across all possible coalitions. Shapley
values can be estimated using Monte Carlo sampling
[117], since only approximate solutions are feasible. The
interpretation of the estimated Shapley value is fairly
reasonable: the contribution of a feature value to the
difference between the actual prediction and the mean

prediction given the current set of feature values. SHAP
has a solid theoretical foundation and its original pro-
posal, KernelSHAP, connects LIME with Shapley values.
However, it is slow, ignores feature dependencies, and it
can be misinterpreted.

Due to their current popularity, you can easily find surveys
[118] and even textbooks [119] on XAI techniques.

Some commercial vendors offer their own implementation
of XAI techniques such as LIME or SHAP, often at a premium.
It should be noted that the explanations they provide are
unstable [120] and that they can also hide biases [121]. In
fact, explanations can be manipulated on purpose. Both LIME
and SHAP, for instance, can be used to create intentionally
misleading interpretations.

Given a particular example, the explanation provided by
a local XAI technique might hold. However, for a different
example that also fits that explanation, a black box ML model
might provide a completely different conclusion. Of course,
the XAI method will eagerly provide a novel explanation
to describe why the conclusion is now different, even the
opposite. In some sense, therefore, local XAI methods give
excuses more than explanations.

IV. CONCLUSION

This whitepaper describes the approach we use to predict
trends in financial markets with the help of deep learning
techniques.

If the efficient-market hypothesis [EMH] held, asset prices
would always reflect all the available information and consis-
tently beating the market would be an impossibility.

If we just use historical prices for the asset price we want
to predict, as most traditional forecasting techniques do, our
predictive accuracy would be modest. In the limit, for efficient
markets, our accuracy would be 50%. Even without using
additional information, effective algorithmic trading strategies
have been developed that can provide an edge.

By taking additional context into account, we can improve
our odds of beating the market. Our models use of time
series instead of the scalar values more traditional techniques
employ as input (e.g., hand-crafted features or trading alphas).
This poses significant challenges from the technical point of
view, given the large number of degrees of freedom you have
when designing deep learning models, from feature selection,
engineering, and extraction, to hyperparameter optimization
and fine tuning.

The incorporation of hundreds of time series, not even
hundreds of scalar variables, is an unsurmountable limitation
of many traditional ML techniques, so they cannot benefit
from the deluge of available data at our fingertips. Traditional
solutions based on risk indicators also tend to rely on linear
models. Since we live in a complex nonlinear world, linear
approximations are not always applicable. Linear models are
not only less accurate than deep learning models, but they
are also less robust to the presence of noise in data and,
more importantly, they are less responsive when market trends
change, which they often do abruptly.

Deep learning models provide quantitative advantages with
respect to other ML techniques for dealing with the complexity
of current financial markets, hence they are at the core of ACCI
risk indicators.

REFERENCES

[1] C. Wilcox and E. Crittenden, “Does Trend Following Work on
Stocks?,” November 2005. Blackstar Funds, LLC, Phoenix, AZ.

[2] R. A. Levy, “Relative Strength as a Criterion for Investment Selection,”
The Journal of Finance, vol. 22, no. 4, pp. 595–610, 1967.

[3] N. Jegadeesh and S. Titman, “Returns to Buying Winners and Selling
Losers: Implications for Stock Market Efficiency,” The Journal of
Finance, vol. 48, no. 1, pp. 65–91, 1993.

[4] A. F. Clenow, Stocks on the Move: Beating the Market with Hedge
Fund Momentum Strategies. Equilateral Publishing, 2015.

[5] G. Cybenko, “Approximation by superpositions of a sigmoidal func-
tion,” Mathematics of Control, Signals, and Systems, vol. 2, no. 4,
pp. 303–314, 1989.

[6] K.-i. Funahashi, “On the approximate realization of continuous map-
pings by neural networks,” Neural Networks, vol. 2, no. 3, pp. 183 –
192, 1989.

[7] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, vol. 2, no. 5,
pp. 359 – 366, 1989.

[8] G. F. Montúfar, “Universal Approximation Depth and Errors of Narrow
Belief Networks with Discrete Units,” Neural Computation, vol. 26,
pp. 1386–1407, July 2014.

[9] D. H. Wolpert, “The lack of a priori distinctions between learning
algorithms,” Neural Computation, vol. 8, no. 7, pp. 1341–1390, 1996.

[10] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1, pp. 67–82, 1997.

[11] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learn-
ing, vol. 20, pp. 273–297, Sept. 1995.

[12] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik,
“Support vector regression machines,” in Proceedings of the 9th
International Conference on Neural Information Processing Systems,
NIPS’96, (Cambridge, MA, USA), p. 155–161, MIT Press, 1996.

[13] C. S. Bojer and J. P. Meldgaard, “Kaggle forecasting competitions: An
overlooked learning opportunity,” International Journal of Forecasting,
vol. 37, no. 2, pp. 587–603, 2021.

[14] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32,
Oct. 2001.

[15] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” The Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2001.

[16] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[17] F. Berzal, Redes Neuronales & Deep Learning - Volumen I: Entre-
namiento de redes neuronales artificiales [Neural Networks and Deep
Learning - Volume I: Training Artificial Neural Networks, in Spanish].
Amazon KDP, 2019.

[18] F. Berzal, Redes Neuronales & Deep Learning - Volumen II: Regular-
ización, optimización & arquitecturas especializadas [Neural Networks
and Deep Learning - Volume II: Regularization, Optimization, and
Specialized Architectures, in Spanish]. Amazon KDP, 2019.

[19] J. L. McClelland and A. Cleeremans, “Connectionist models,” in The
Oxford Companion to Consciousness (B. Tim, C. Axel, and W. Patrick,
eds.), Oxford University Press, 2009.

[20] Y. Bengio, “Learning Deep Architectures for AI,” Foundations and
Trends in Machine Learning, vol. 2, pp. 1–127, Jan. 2009.

[21] Z. Kakushadze, “101 Formulaic Alphas,” Willmott Magazine, vol. 84,
pp. 72–81, July 2016.

[22] L. Fernández-Garcı́a, “Desarrollo de un sistema de trading algorı́tmico
basado en Deep Learning [Develoment of an Algorithmic Trading
System based on Deep Learning, in Spanish],” November 2022. B.Eng.
capstone project, University of Granada.

[23] K. Pearson, “On Lines and Planes of Closest Fit to Systems of Points in
Space,” Philosophical Magazine, vol. 2, no. 11, pp. 559—-572, 1901.

[24] H. Hotelling, “Analysis of a Complex of Statistical Variables into
Principal Components,” Journal of Educational Psychology, vol. 24,
no. 6, p. 417, 1933.

[25] P. Drineas, R. Kannan, and M. W. Mahoney, “Fast Monte Carlo
Algorithms for Matrices III: Computing a Compressed Approximate
Matrix Decomposition,” SIAM Journal on Computing, vol. 36, no. 1,
pp. 184–206, 2006.

[26] M. W. Mahoney, M. Maggioni, and P. Drineas, “Tensor-CUR Decom-
positions for Tensor-based Data,” in Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’06, (New York, NY, USA), p. 327–336, Association for
Computing Machinery, 2006.

[27] M. W. Mahoney, M. Maggioni, and P. Drineas, “Tensor-CUR Decom-
positions for Tensor-Based Data,” SIAM Journal on Matrix Analysis
and Applications, vol. 30, p. 957–987, sep 2008.

[28] P. J. Schmid and J. Sesterhenn, “Dynamic Mode Decomposition of
Numerical and Experimental Data,” Bulletin of the American Physical
Society, 61st Annual Meeting of the APS Division of Fluid Dynamics,
vol. 53, no. 15, 2008.

[29] P. J. Schmid, “Dynamic Mode Decomposition of Numerical and
Experimental Data,” Journal of Fluid Mechanics, vol. 656, pp. 5–28,
2010.

[30] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear Component
Analysis as a Kernel Eigenvalue Problem,” Neural Computation,
vol. 10, pp. 1299–1319, 07 1998.

[31] G. E. Hinton and S. Roweis, “Stochastic Neighbor Embedding,”
in NIPS’2002 Advances in Neural Information Processing Systems
(S. Becker, S. Thrun, and K. Obermayer, eds.), vol. 15, MIT Press,
2002.

[32] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.,”
Journal of Machine Learning Research, vol. 9, no. 11, 2008.

[33] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold
approximation and projection for dimension reduction,” arXiv preprint
arXiv:1802.03426, 2018.

[34] M. A. Kramer, “Nonlinear Principal Component Analysis Using Au-
toassociative Neural Networks,” AIChE journal, vol. 37, no. 2, pp. 233–
243, 1991.

[35] A. Makhzani and B. Frey, “K-sparse autoencoders,” arXiv preprint
arXiv:1312.5663, 2013.

[36] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol,
and L. Bottou, “Stacked Denoising Autoencoders: Learning Useful
Representations in a Deep Network with a Local Denoising Criterion.,”
Journal of Machine Learning Research, vol. 11, no. 12, 2010.

[37] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive
auto-encoders: Explicit invariance during feature extraction,” in Pro-
ceedings of the 28th International Conference on Machine Learning,
pp. 833–840, 2011.

[38] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14,
no. 2, pp. 179–211, 1990.

[39] M. C. Mozer, “A Focused Backpropagation Algorithm for Temporal
Pattern Recognition,” Complex Systems, vol. 3, no. 4, pp. 349–381,
1989.

[40] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, pp. 1735–1780, 11 1997.

[41] K. Cho, B. van Merriënboer, Ç. Gúlçehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn
encoder–decoder for statistical machine translation,” in Proceedings
of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1724–1734, 2014.

[42] K. Chen, Y. Zhou, and F. Dai, “A LSTM-based method for stock
returns prediction: A case study of China stock market,” in 2015 IEEE
International Conference on Big Data (Big Data), pp. 2823–2824,
2015.

[43] D. M. Q. Nelson, A. C. M. Pereira, and R. A. de Oliveira, “Stock
market’s price movement prediction with LSTM neural networks,” in
2017 International Joint Conference on Neural Networks (IJCNN),
pp. 1419–1426, 2017.

[44] K. J. Lang, , and G. E. Hinton, “The development of the time-delay
neural network architecture for speech recognition,” Technical Report
CMU-CS-88-152, 1988.

[45] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang,
“Phoneme recognition using time-delay neural networks,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, vol. 37, no. 3,
pp. 328–339, 1989.

[46] K. J. Lang, A. H. Waibel, and G. E. Hinton, “A time-delay neural
network architecture for isolated word recognition,” Neural Networks,
vol. 3, no. 1, pp. 23–43, 1990.

[47] K. Fukushima, “Neural network model for a mechanism of pattern
recognition unaffected by shift in position - Neocognitron -,” Transac-
tion IEICE (in Japanese), vol. 62, no. 10, pp. 658–665, 1979.

[48] K. Fukushima, “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position,”
Biological Cybernetics, vol. 36, no. 4, pp. 193–202, 1980.

[49] E. Hoseinzade and S. Haratizadeh, “CNNpred: CNN-based stock
market prediction using a diverse set of variables,” Expert Systems
with Applications, vol. 129, pp. 273–285, 2019.

[50] P. Sermanet and Y. LeCun, “Traffic sign recognition with multi-scale
convolutional networks,” in The 2011 International Joint Conference
on Neural Networks, pp. 2809–2813, 2011.

[51] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Proceedings of the 31st International Conference on Neural Infor-
mation Processing Systems (NIPS 2017) (I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
eds.), vol. 30, pp. 6000—-6010, Curran Associates, Inc., 2017.

[52] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, “Generalization
by weight-elimination with application to forecasting,” in NIPS’1990
Advances in Neural Information Processing Systems 3, pp. 875–882,
Morgan-Kaufmann, 1990.

[53] A. Gupta and S. M. Lam, “Weight decay backpropagation for noisy
data,” Neural Networks, vol. 11, no. 6, pp. 1127 – 1138, 1998.

[54] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems.
Scripta Series in Mathematics, V.H. Winston & Sons, 1977.

[55] A. E. Hoerl and R. W. Kennard, “Ridge Regression: Biased Estimation
for Nonorthogonal Problems,” Technometrics, vol. 42, no. 1, pp. 80–86,
1970.

[56] M. Ishikawa, “Learning of modular structured networks,” Artificial
Intelligence, vol. 75, no. 1, pp. 51 – 62, 1995.

[57] R. Kozma, M. Sakuma, Y. Yokoyama, and M. Kitamura, “On the
accuracy of mapping by neural networks trained by backpropagation
with forgetting,” Neurocomputing, vol. 13, no. 2, pp. 295 – 311, 1996.

[58] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,”
Journal of the Royal Statistical Society (Series B: Methodological),
vol. 58, no. 1, pp. 267–288, 1996.

[59] H. Zou and T. Hastie, “Regularization and Variable Selection via
the Elastic Net,” Journal of the Royal Statistical Society (Series B:
Statistical Methodology), vol. 67, no. 2, pp. 301–320, 2005.

[60] J. Sietsma and R. J. Dow, “Creating artificial neural networks that
generalize,” Neural Networks, vol. 4, no. 1, pp. 67–79, 1991.

[61] C. M. Bishop, “Training with Noise is Equivalent to Tikhonov Regu-
larization,” Neural Computation, vol. 7, pp. 108–116, Jan. 1995.

[62] K.-C. Jim, C. Giles, and B. G. Horne, “An analysis of noise in recurrent
neural networks: convergence and generalization,” IEEE Transactions
on Neural Networks, vol. 7, pp. 1424–1438, Nov 1996.

[63] S. Hochreiter and J. Schmidhuber, “Simplifying neural nets by dis-
covering flat minima,” in NIPS’1994 Advances in Neural Information
Processing Systems 7 (G. Tesauro, D. S. Touretzky, and T. K. Leen,
eds.), pp. 529–536, MIT Press, 1995.

[64] B. Poole, J. Sohl-Dickstein, and S. Ganguli, “Analyzing noise in
autoencoders and deep networks,” arXiv e-prints, vol. arXiv:1406.1831,
2014.

[65] A. Neelakantan, L. Vilnis, Q. V. Le, I. Sutskever, L. Kaiser, K. Kurach,
and J. Martens, “Adding gradient noise improves learning for very deep
networks,” arXiv e-prints, vol. arXiv:1511.06807, 2015.

[66] P. Chandra and Y. Singh, “Regularization and feedforward artificial
neural network training with noise,” in Proceedings of the 2003
International Joint Conference on Neural Networks, vol. 3, pp. 2366–
2371 vol.3, July 2003.

[67] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting,” Journal of Machine Learning Research, vol. 15, pp. 1929–
1958, 2014.

[68] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in NIPS’2012 Advances
in Neural Information Processing Systems 25, pp. 1097–1105, 2012.

[69] D. Warde-Farley, I. J. Goodfellow, A. Courville, and Y. Bengio,
“An empirical analysis of dropout in piecewise linear networks,” in
ICLR’2014 International Conference on Learning Representations,
vol. arXiv:1312.6197, 2014.

[70] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning,” in Proceedings

of The 33rd International Conference on Machine Learning (M. F.
Balcan and K. Q. Weinberger, eds.), vol. 48 of Proceedings of Machine
Learning Research, (New York, New York, USA), pp. 1050–1059,
PMLR, 20–22 Jun 2016.

[71] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” in ICML’2015
Proceedings of the 32nd International Conference on Machine Learn-
ing (F. Bach and D. Blei, eds.), vol. 37 of Proceedings of Machine
Learning Research, (Lille, France), pp. 448–456, PMLR, 07–09 Jul
2015.

[72] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch
normalization help optimization?,” in NeurIPS’2018, 32nd Conference
on Neural Information Processing Systems (S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.),
vol. 31, Curran Associates, Inc., 2018.

[73] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Op-
timization,” Journal of Machine Learning Research, vol. 13, pp. 281–
305, Feb. 2012.

[74] D. J. C. MacKay, “Bayesian interpolation,” Neural Compututation,
vol. 4, pp. 415–447, May 1992.

[75] N. Srinivas, A. Krause, S. Kakade, and M. Seeger, “Gaussian process
optimization in the bandit setting: no regret and experimental design,”
in Proceedings of the 27th International Conference on International
Conference on Machine Learning, ICML’10, (Madison, WI, USA),
p. 1015–1022, Omnipress, 2010.

[76] K. Kandasamy, G. Dasarathy, J. B. Oliva, J. G. Schneider, and
B. Póczos, “Gaussian Process Bandit Optimisation with Multi-fidelity
Evaluations,” in Advances in Neural Information Processing Sys-
tems 29: Annual Conference on Neural Information Processing Sys-
tems 2016, December 5-10, 2016, Barcelona, Spain (D. D. Lee,
M. Sugiyama, U. von Luxburg, I. Guyon, and R. Garnett, eds.),
pp. 992–1000, 2016.

[77] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian op-
timization of machine learning algorithms,” in NIPS’2012 Advances
in Neural Information Processing Systems 25 (F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, eds.), pp. 2951–2959, Curran
Associates, Inc., 2012.

[78] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum,
and F. Hutter, “Efficient and Robust Automated Machine Learning,”
in NIPS’2015 Advances in Neural Information Processing Systems
(C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, eds.),
vol. 28, pp. 2962–2970, Curran Associates, Inc., 2015.

[79] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum,
and F. Hutter, Auto-sklearn: Efficient and Robust Automated Machine
Learning, pp. 113–134. Springer International Publishing, 2019.

[80] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter,
“Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning,” Journal
of Machine Learning Research, vol. 23, no. 261, pp. 1–61, 2022.

[81] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-
based optimization for general algorithm configuration,” in LION 5:
5th International Conference on Learning and Intelligent Optimization,
Rome, Italy, January 17-21, 2011. Selected Papers (C. A. C. Coello,
ed.), pp. 507–523, Berlin, Heidelberg: Springer, 2011.

[82] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
for hyper-parameter optimization,” in NIPS’2011 Advances in Neural
Information Processing Systems 24 (J. Shawe-Taylor, R. S. Zemel, P. L.
Bartlett, F. Pereira, and K. Q. Weinberger, eds.), pp. 2546–2554, Curran
Associates, Inc., 2011.

[83] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision
architectures,” in Proceedings of the 30th International Conference on
Machine Learning (S. Dasgupta and D. McAllester, eds.), vol. 28 of
Proceedings of Machine Learning Research, (Atlanta, Georgia, USA),
pp. 115–123, PMLR, 17–19 Jun 2013.

[84] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram,
M. M. A. Patwary, Prabhat, and R. P. Adams, “Scalable bayesian
optimization using deep neural networks,” in ICML’2015: Proceedings
of the 32nd International Conference on Machine Learning, Lille,
France, 6-11 July 2015, pp. 2171–2180, 2015.

[85] D. Maclaurin, D. K. Duvenaud, and R. P. Adams, “Gradient-based
hyperparameter optimization through reversible learning,” in Proceed-
ings of the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015 (F. R. Bach and D. M. Blei, eds.),

vol. 37 of JMLR Workshop and Conference Proceedings, pp. 2113–
2122, JMLR.org, 2015.

[86] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to
Derivative-Free Optimization. MPS-SIAM Series on Optimization,
Society for Industrial and Applied Mathematics, 2009.

[87] G. I. Diaz, A. Fokoue-Nkoutche, G. Nannicini, and H. Samulowitz,
“An effective algorithm for hyperparameter optimization of neural
networks,” IBM Journal of Research and Development, vol. 61, no. 4/5,
pp. 9–1, 2017.

[88] K. Swersky, J. Snoek, and R. P. Adams, “Freeze-thaw bayesian
optimization,” arXiv e-prints, vol. arXiv:1406.3896, 2014.

[89] A. X. Zheng and M. Bilenko, “Lazy paired hyper-parameter tuning,”
in IJCAI’2013, Proceedings of the 23rd International Joint Conference
on Artificial Intelligence, Beijing, China, August 3-9, 2013 (F. Rossi,
ed.), pp. 1924–1931, IJCAI/AAAI, January 2013.

[90] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp, “A racing al-
gorithm for configuring metaheuristics,” in GECCO 2002: Proceedings
of the Genetic and Evolutionary Computation Conference, New York,
USA, 9-13 July 2002, pp. 11–18, Morgan Kaufmann, 2002.

[91] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and
T. Stützle, “The irace package: Iterated racing for automatic algorithm
configuration,” Operations Research Perspectives, vol. 3, pp. 43–58,
2016.

[92] K. Jamieson and A. Talwalkar, “Non-stochastic best arm identification
and hyperparameter optimization,” in Proceedings of the 19th Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS),
2016, Cadiz, Spain. JMLR: W&CP volume 41, pp. 240–248, PMLR,
2016.

[93] L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina, J. Ben-Tzur,
M. Hardt, B. Recht, and A. Talwalkar, “A system for massively
parallel hyperparameter tuning,” Proceedings of Machine Learning and
Systems, 3rd MLSys Conference, Austin, TX, vol. 2, pp. 230–246, 2020.

[94] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter opti-
mization,” Journal of Machine Learning Research, vol. 18, no. 185,
pp. 1–52, 2018.

[95] K. L. Downing, Intelligence Emerging: Adaptivity and Search in
Evolving Neural Systems. MIT Press, 2015.

[96] G. Kousiouris, T. Cucinotta, and T. Varvarigou, “The effects of schedul-
ing, workload type and consolidation scenarios on virtual machine
performance and their prediction through optimized artificial neural
networks,” Journal of Systems and Software, vol. 84, no. 8, pp. 1270–
1291, 2011.

[97] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Fran-
con, B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, et al., “Evolving
deep neural networks,” in Artificial intelligence in the age of neural
networks and brain computing, pp. 269–287, Elsevier, 2024.

[98] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Don-
ahue, A. Razavi, O. Vinyals, T. Green, I. Dunning, K. Simonyan,
et al., “Population based training of neural networks,” arXiv preprint
arXiv:1711.09846, 2017.

[99] A. Li, O. Spyra, S. Perel, V. Dalibard, M. Jaderberg, C. Gu, D. Budden,
T. Harley, and P. Gupta, “A generalized framework for population
based training,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1791–1799,
2019.

[100] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[101] E. Hazan, A. Klivans, and Y. Yuan, “Hyperparameter optimization: A
spectral approach,” arXiv preprint arXiv:1706.00764, 2017.

[102] C. Malherbe and N. Vayatis, “Global optimization of lipschitz func-
tions,” in International Conference on Machine Learning, pp. 2314–
2323, PMLR, 2017.

[103] T. Miller, “Explanation in artificial intelligence: Insights from the social
sciences,” Artificial Intelligence, vol. 267, pp. 1–38, 2019.

[104] O. Biran and C. Cotton, “Explanation and justification in machine
learning: A survey,” in IJCAI-17 Workshop on eXplainable AI (XAI),
vol. 8, pp. 8–13, 2017.

[105] B. Kim, R. Khanna, and O. O. Koyejo, “Examples are not enough,
learn to criticize! criticism for interpretability,” in NIPS’2016 Advances
in Neural Information Processing Systems (D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, eds.), vol. 29, Curran Associates,
Inc., 2016.

[106] Q. Zhao and T. Hastie, “Causal interpretations of black-box models,”
Journal of Business & Economic Statistics, vol. 39, no. 1, pp. 272–281,
2021.

[107] J. B. Alex Goldstein, Adam Kapelner and E. Pitkin, “Peeking inside
the black box: Visualizing statistical learning with plots of individual
conditional expectation,” Journal of Computational and Graphical
Statistics, vol. 24, no. 1, pp. 44–65, 2015.

[108] D. W. Apley and J. Zhu, “Visualizing the effects of predictor vari-
ables in black box supervised learning models,” Journal of the Royal
Statistical Society Series B: Statistical Methodology, vol. 82, no. 4,
pp. 1059–1086, 2020.

[109] A. Fisher, C. Rudin, and F. Dominici, “All models are wrong, but many
are useful: Learning a variable’s importance by studying an entire class
of prediction models simultaneously,” Journal of Machine Learning
Research, vol. 20, no. 177, pp. 1–81, 2019.

[110] J. H. Friedman and B. E. Popescu, “Predictive learning via rule
ensembles,” The Annals of Applied Statistics, vol. 2, no. 3, pp. 916–
954, 2008.

[111] G. Hooker, “Discovering additive structure in black box functions,” in
Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 575–580, 2004.

[112] B. M. Greenwell, B. C. Boehmke, and A. J. McCarthy, “A simple and
effective model-based variable importance measure,” arXiv preprint
arXiv:1805.04755, 2018.

[113] M. T. Ribeiro, S. Singh, and C. Guestrin, “Anchors: High-precision
model-agnostic explanations,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 32, 2018.

[114] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you?
Explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, pp. 1135–1144, 2016.

[115] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” NIPS’2017 Advances in neural information pro-
cessing systems, vol. 30, 2017.

[116] L. S. Shapley, “A value for n-person games,” Contributions to the
Theory of Games (AM-28), vol. 2, no. 28, pp. 307–317, 1953.

[117] E. Štrumbelj and I. Kononenko, “Explaining prediction models and
individual predictions with feature contributions,” Knowledge and
information systems, vol. 41, pp. 647–665, 2014.

[118] N. Burkart and M. F. Huber, “A survey on the explainability of super-
vised machine learning,” Journal of Artificial Intelligence Research,
vol. 70, p. 245–317, May 2021.

[119] C. Molnar, Interpretable machine learning: Interpretable Machine
Learning: A Guide for Making Black Box Models Interpretable. inde-
pendently published, 2021.

[120] D. Alvarez-Melis and T. S. Jaakkola, “On the robustness of inter-
pretability methods,” arXiv preprint arXiv:1806.08049, 2018.

[121] D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju, “Fooling LIME
and SHAP: Adversarial attacks on post hoc explanation methods,” in
Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society,
pp. 180–186, 2020.

Fernando Berzal received his PhD degree in Com-
puter Science from the University of Granada, Spain,
in 2002 and he was awarded the Computer Sci-
ence Studies National First Prize by the Spanish
Ministry of Education, in 2000. He is an associate
professor with the Department of Computer Science
and Artificial Intelligence, University of Granada,
Spain, and he has been a visiting research scientist
at the University of Illinois at Urbana-Champaign.
His research interests include model-driven software
development, software design, and the application of

data mining techniques, as well as Artificial Intelligence, complex networks,
and deep learning. He is a senior member of the ACM and also a member of
the IEEE Computer Society.

Alberto Garcı́a holds a Business & Administration
Degree and has also obtained some of the most
recognized Investment Certificates in Finance. Dur-
ing his career, Alberto has earned the CFA, CAIA,
FRM, ESG CFA Investment Certificate, and the
IMC designation. He worked from 2005 to 2010
as a Senior Business Analyst for Ahorro Corpo-
ración and moved to UK, where he worked as
an Investment Analyst/Quantitative Developer for
Collidr until 2015. From 2015 to November 2022,
he worked for Santander Asset Management first in

the Portfolio Construction and Risk Management Team to move internally to
the Asset Allocation team where he spent the last 3 years. He is currently the
head of global asset allocation at ACCI Capital Investments.

